Advertisement

Journal of Analysis and Testing

, Volume 2, Issue 3, pp 263–273 | Cite as

Generalization of Reference System for Calculating the Second Dimension Retention Index in GC × GC–MS

  • Md Aminul Islam Prodhan
  • Ahmed A. Sleman
  • Seongho Kim
  • Craig McClain
  • Xiang ZhangEmail author
Original Paper
  • 67 Downloads

Abstract

Using C4–C25 fatty acid methyl esters (C4–C25 FAMEs) as a sample reference series, a method was developed to generalize the reference system for calculating the second dimension retention index (2I) of compounds analyzed by comprehensive two-dimensional gas chromatography–mass spectrometry (GC × GC–MS). The second dimension elution temperature (2Te), second dimension unadjusted retention time (2tR), and the linear retention index (IT) of C4–C25 FAMEs were used to form a second dimension retention index surface (2IS) via a three-dimensional surface fitting model. The 2I of an analyte analyzed by GC × GC–MS was then calculated from the 2IS based on its 2tR and 2Te. The developed method was validated by calculating the 2I of n-alkanes, 80 compounds, and two commercially available mixtures (MegaMix A and MegaMix B). Compared to the conventional method, the developed method keeps the 2I in n-alkane retention index scale, and enables using any compounds as references to obtain a much increased separation space in the second dimension GC.

Keywords

Retention index Second dimension retention index GC–MS GC × GC–MS 

Notes

Acknowledgements

The authors would like to thank Mrs. Marion McClain for review of this manuscript. This work was supported by NIH grant nos. 1P20GM113226 (CJM), 1P50AA024337 (CJM), 1U01AA021893-01 (CJM), 1U01AA021901-01 (CJM), 1U01AA022489-01A1 (CJM), and 1R01AA023681-01 (CJM). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. This work was also supported by the Department of Veterans Affairs 1I01BX002996-01A2 (CJM).

Supplementary material

41664_2018_74_MOESM1_ESM.docx (601 kb)
Supplementary material 1 (DOCX 601 kb)

References

  1. 1.
    Winnike JH, Wei X, Knagge KJ, Colman SD, Gregory SG, Zhang X. Comparison of GC–MS and GC × GC–MS in the analysis of human serum samples for biomarker discovery. J Proteome Res. 2015;14(4):1810–7.CrossRefGoogle Scholar
  2. 2.
    Shi X, Wei X, Yin X, Wang Y, Zhang M, Zhao C, et al. Hepatic and fecal metabolomic analysis of the effects of Lactobacillus rhamnosus GG on alcoholic fatty liver disease in mice. J Proteome Res. 2015;14(2):1174–82.CrossRefGoogle Scholar
  3. 3.
    Shi X, Wei X, Koo I, Schmidt RH, Yin X, Kim SH, et al. Metabolomic analysis of the effects of chronic arsenic exposure in a mouse model of diet-induced fatty liver disease. J Proteome Res. 2014;13(2):547–54.  https://doi.org/10.1021/pr400719u.CrossRefPubMedGoogle Scholar
  4. 4.
    Shi X, Wahlang B, Wei X, Yin X, Falkner KC, Prough RA, et al. Metabolomic analysis of the effects of polychlorinated biphenyls in nonalcoholic fatty liver disease. J Proteome Res. 2012;11(7):3805–15.CrossRefGoogle Scholar
  5. 5.
    Han J, Datla R, Chan S, Borchers CH. Mass spectrometry-based technologies for high-throughput metabolomics. Bioanalysis. 2009;1(9):1665–84.  https://doi.org/10.4155/bio.09.158.CrossRefPubMedGoogle Scholar
  6. 6.
    Warner DR, Liu H, Dastidar SG, Warner JB, Prodhan MAI, Yin X, et al. Ethanol and unsaturated dietary fat induce unique patterns of hepatic ω-6 and ω-3 PUFA oxylipins in a mouse model of alcoholic liver disease. PLoS One. 2018;13(9):e0204119.CrossRefGoogle Scholar
  7. 7.
    Koo I, Kim S, Zhang X. Comparative analysis of mass spectral matching-based compound identification in gas chromatography–mass spectrometry. J Chromatogr A. 2013;1298:132–8.CrossRefGoogle Scholar
  8. 8.
    Kim S, Zhang X. Discovery of false identification using similarity difference in GC–MS-based metabolomics. J Chemom. 2015;29(2):80–6.CrossRefGoogle Scholar
  9. 9.
    Wei X, Koo I, Kim S, Zhang X. Compound identification in GC–MS by simultaneously evaluating the mass spectrum and retention index. Analyst. 2014;139(10):2507–14.  https://doi.org/10.1039/C3AN02171H.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Castello G. Retention index systems: alternatives to the n-alkanes as calibration standards. J Chromatogr A. 1999;842(1–2):51–64.CrossRefGoogle Scholar
  11. 11.
    Raymer J, Wiesler D, Novotny M. Structure-retention studies of model ketones by capillary gas chromatography. J Chromatogr A. 1985;325:13–22.CrossRefGoogle Scholar
  12. 12.
    Kersten BR, Poole CF, Furton KG. Ambiguities in the determination of McReynolds stationary phase constants. J Chromatogr A. 1987;411:43–59.CrossRefGoogle Scholar
  13. 13.
    Hawkes SJ. Letters to the editor: reply. J Chromatogr Sci. 1972;10((8):536.  https://doi.org/10.1093/chromsci/10.8.536.CrossRefGoogle Scholar
  14. 14.
    Ashes J, Haken J. Gas chromatography of homologous esters: VI. Structure—retention increments of aliphatic esters. J Chromatogr A. 1974;101(1):103–23.CrossRefGoogle Scholar
  15. 15.
    Novák J, Rúžičková J. Generalization of the gas chromatographic retention index system. J Chromatogr A. 1974;91:79–88.CrossRefGoogle Scholar
  16. 16.
    Lee ML, Vassilaros DL, White CM. Retention indices for programmed-temperature capillary-column gas chromatography of polycyclic aromatic hydrocarbons. Anal Chem. 1979;51(6):768–73.CrossRefGoogle Scholar
  17. 17.
    Vandendool H, Kratz PD. A Generalization of the retention index system including linear temperature programmed gas–liquid partition chromatography. J Chromatogr. 1963;11:463–71.CrossRefGoogle Scholar
  18. 18.
    Marriott P, Shellie R. Principles and applications of comprehensive two-dimensional gas chromatography. Trends Anal Chem. 2002;21(9):573–83.  https://doi.org/10.1016/S0165-9936(02)00814-2.CrossRefGoogle Scholar
  19. 19.
    Tranchida PQ, Purcaro G, Dugo P, Mondello L, Purcaro G. Modulators for comprehensive two-dimensional gas chromatography. Trends Anal Chem. 2011;30(9):1437–61.  https://doi.org/10.1016/j.trac.2011.06.010.CrossRefGoogle Scholar
  20. 20.
    Murray JA. Qualitative and quantitative approaches in comprehensive two-dimensional gas chromatography. J Chromatogr A. 2012;1261:58–68.  https://doi.org/10.1016/j.chroma.2012.05.012.CrossRefPubMedGoogle Scholar
  21. 21.
    Phillips JB, Beens J. Comprehensive two-dimensional gas chromatography: a hyphenated method with strong coupling between the two dimensions. J Chromatogr A. 1999;856(1):331–47.  https://doi.org/10.1016/S0021-9673(99)00815-8.CrossRefPubMedGoogle Scholar
  22. 22.
    Ong RCY, Marriott PJ. A review of basic concepts in comprehensive two-dimensional gas chromatography. J Chromatogr Sci. 2002;40(5):276–91.  https://doi.org/10.1093/chromsci/40.5.276.CrossRefPubMedGoogle Scholar
  23. 23.
    Adahchour M, Beens J, Vreuls RJJ, Brinkman UAT. Recent developments in comprehensive two-dimensional gas chromatography (GC × GC). Trends Anal Chem. 2006;25(8):821–40.  https://doi.org/10.1016/j.trac.2006.03.003.CrossRefGoogle Scholar
  24. 24.
    Adahchour M, Beens J, Brinkman UAT. Recent developments in the application of comprehensive two-dimensional gas chromatography. J Chromatogr A. 2008;1186(1):67–108.  https://doi.org/10.1016/j.chroma.2008.01.002.CrossRefPubMedGoogle Scholar
  25. 25.
    Kováts E. Gas-chromatographische Charakterisierung organischer Verbindungen. Teil 1: Retentionsindices aliphatischer Halogenide, Alkohole, Aldehyde und Ketone. Helvetica Chimica Acta. 1958;41(7):1915–32.  https://doi.org/10.1002/hlca.19580410703.CrossRefGoogle Scholar
  26. 26.
    Zhao Y, Zhang J, Wang B, Kim SH, Fang A, Bogdanov B, et al. A method of calculating the second dimension retention index in comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry. J Chromatogr A. 2011;1218(18):2577–83.  https://doi.org/10.1016/j.chroma.2011.02.072.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Beens J, Tijssen R, Blomberg J. Prediction of comprehensive two-dimensional gas chromatographic separations. J Chromatogr A. 1998;822(2):233–51.  https://doi.org/10.1016/S0021-9673(98)00649-9.CrossRefGoogle Scholar
  28. 28.
    Western RJ, Marriott PJ. Retention correlation maps in comprehensive two-dimensional gas chromatography. J Sep Sci. 2002;25(13):831–8.  https://doi.org/10.1002/1615-9314(20020901)25:13%3c831:AID-JSSC832%3e3.0.CO;2-R.CrossRefGoogle Scholar
  29. 29.
    Western RJ, Marriott PJ. Methods for generating second dimension retention index data in comprehensive two-dimensional gas chromatography. J Chromatogr A. 2003;1019(1):3–14.  https://doi.org/10.1016/j.chroma.2003.09.006.CrossRefPubMedGoogle Scholar
  30. 30.
    Bieri S, Marriott PJ. Dual-injection system with multiple injections for determining bidimensional retention indexes in comprehensive two-dimensional gas chromatography. Anal Chem. 2008;80(3):760–8.  https://doi.org/10.1021/ac071367q.CrossRefPubMedGoogle Scholar
  31. 31.
    Bieri S, Marriott PJ. Generating multiple independent retention index data in dual-secondary column comprehensive two-dimensional gas chromatography. Anal Chem. 2006;78(23):8089–97.  https://doi.org/10.1021/ac060869l.CrossRefPubMedGoogle Scholar
  32. 32.
    Veenaas C, Haglund P. A retention index system for comprehensive two-dimensional gas chromatography using polyethylene glycols. J Chromatogr A. 2017;1536:67–74.CrossRefGoogle Scholar
  33. 33.
    Prodhan MAI, Yin X, Kim S, McClain C, Zhang X. Surface fitting for calculating the second dimension retention index in comprehensive two-dimensional gas chromatography mass spectrometry. J Chromatogr A. 2018;1539:62–70.  https://doi.org/10.1016/j.chroma.2018.01.049.CrossRefPubMedGoogle Scholar
  34. 34.
    Pacáková V, Feltl L. Chromatographic retention indices: an aid to identification of organic compounds. New York: Ellis Horwood Ltd; 1992.Google Scholar
  35. 35.
    Rang S, Kuningas K, Orav A, Eisen O. Capillary gas chromatography of n-alkyness: II. Variation of retention indices with temperature. J Chromatogr A. 1976;128(1):53–8.CrossRefGoogle Scholar
  36. 36.
    Döring CE, Estel D, Weber J, Zimmermann G, Zschummel D. Kapillar-gaschromatographische Untersuchungen an homo- und codimeren C5-Dienen. –Einige Zusammenhänge zwischen Retentionsverhalten und Struktur bzw. Konfiguration. J Prakt Chem. 1971;313(6):1081–91.  https://doi.org/10.1002/prac.19713130612.CrossRefGoogle Scholar
  37. 37.
    Hala S, Eyem J, Burkhard J, Landa S. Retention indices of adamantanes. J Chromatogr Sci. 1970;8(4):203–9.CrossRefGoogle Scholar

Copyright information

© The Nonferrous Metals Society of China 2018

Authors and Affiliations

  • Md Aminul Islam Prodhan
    • 1
    • 2
    • 3
    • 4
  • Ahmed A. Sleman
    • 5
  • Seongho Kim
    • 6
    • 8
  • Craig McClain
    • 2
    • 3
    • 6
    • 7
    • 9
  • Xiang Zhang
    • 1
    • 2
    • 3
    • 4
    • 6
    Email author
  1. 1.Department of ChemistryUniversity of LouisvilleLouisvilleUSA
  2. 2.University of Louisville Alcohol Research CenterLouisvilleUSA
  3. 3.University of Louisville Hepatobiology and Toxicology ProgramLouisvilleUSA
  4. 4.Center for Regulatory and Environmental Analytical MetabolomicsUniversity of LouisvilleLouisvilleUSA
  5. 5.Department of Computer Science and Computer EngineeringUniversity of LouisvilleLouisvilleUSA
  6. 6.Department of Pharmacology and ToxicologyUniversity of LouisvilleLouisvilleUSA
  7. 7.Department of MedicineUniversity of LouisvilleLouisvilleUSA
  8. 8.Department of Oncology, Biostatistics Core, Karmanos Cancer Institute, School of MedicineWayne State UniversityDetroitUSA
  9. 9.Robley Rex Louisville VAMCLouisvilleUSA

Personalised recommendations