Survey of Safety Management Approaches to Unmanned Aerial Vehicles and Enabling Technologies

  • Xuejun Zhang
  • Yanshuang Du
  • Bo Gu
  • Guoqiang Xu
  • Yongxiang Xia
Review paper


Unmanned aerial vehicle (UAV) has a rapid development over the last decade. However, an increasing number of severe flight collision events caused by explosive growth of UAV have drawn widespread concern. It is an important issue to investigate safety management approaches of UAVs to ensure safe and efficient operation. In this paper, we present a comprehensive overview of safety management approaches in large, middle and small scales. In large-scale safety management, path-planning problem is a crucial issue to ensure safety and ordered operation of UAVs globally. In middle-scale safety management, it is an important issue to study the conflict detection and resolution methods. And in small-scale safety management, real-time collision avoidance is the last line of ensuring safety. Moreover, a UAV can be regarded as a terminal device connected through communication and information network. Therefore, the enabling technologies, such as sensing, command and control communication, and collaborative decision-making control technology, have been studied in the last.


UAV safety management path-planning conflict detection and resolution collision avoidance enabling technologies 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    P. Angelov. Sense and avoid in UAS [M]. P. Angelov, Ed. Chichester, UK: John Wiley & Sons, Ltd, 2012.Google Scholar
  2. [2]
    K. P. Valavanis, G. J. Vachtsevanos. Handbook of unmanned aerial vehicles [M]. 1st ed. Springer Netherlands, 2015.Google Scholar
  3. [3]
    K. Dalamagkidis, K. Valavanis, L. Piegl. On unmanned aircraft systems issues, challenges and operational restrictions preventing integration into the national airspace system [J]. Prog. Aerosp. Sci., 2008, 44(7-8): 503–519.Google Scholar
  4. [4]
    J. Kuchar, L. Yang. A review of conflict detection and resolution modeling methods [J]. IEEE Trans. Intell. Transp. Syst., 2000, 1(4): 179–189.Google Scholar
  5. [5]
    X. Yu, Y. Zhang. Sense and avoid technologies with applications to unmanned aircraft systems: Review and prospects [J]. Prog. Aerosp. Sci., 2015, 74(3): 152–166.Google Scholar
  6. [6]
    B. M. Albaker, N. A. Rahim. Unmanned aircraft collision detection and resolution: Concept and survey [C]//2010 5th IEEE Conf. Ind. Electron. Appl., Taichung, Taiwan, China, 2010: 248–253.Google Scholar
  7. [7]
    A. Tsourdos, B. White, M. Shanmugavel. Cooperative path planning of unmanned aerial vehicles [M]. Chichester, UK: John Wiley & Sons, Ltd, 2010.Google Scholar
  8. [8]
    C. W. Zheng, L. Li, F. J. Xu, et al. Evolutionary route planner for unmanned air vehicles [J]. IEEE Trans. Robot., 2005, 21(4): 609–620.Google Scholar
  9. [9]
    M. Hwangbo, J. Kuffner, T. Kanade. Efficient two-phase 3D motion planning for small fixed-wing UAVs [C]//Proc. 2007 IEEE Int. Conf. Robot. Autom., Roma, Italy, 2007: 1035–1041.Google Scholar
  10. [10]
    B. B. Meng, X. Gao. UAV path planning based on bidirectional sparse A* search algorithm [C]//2010 Int. Conf. Intell. Comput. Technol. Autom., Changsha, 2010: 1106–1109.Google Scholar
  11. [11]
    J. H. Chuang, N. Ahuja. An analytically tractable potential field model of free space and its application in obstacle avoidance [J]. IEEE Trans. Syst. Man Cybern. Part B, 1998, 28(5): 729–736.Google Scholar
  12. [12]
    A. A. Masoud. Motion planning with gamma-harmonic potential fields [J]. IEEE Trans. Aerosp. Electron. Syst., 2012, 48(4): 2786–2801.Google Scholar
  13. [13]
    O. Cetin, I. Zagli, G. Yilmaz. Establishing obstacle and collision free communication relay for UAVs with artificial potential fields [J]. J. Intell. Robot. Syst., 2013, 69(1-4): 361–372.Google Scholar
  14. [14]
    S. E. Campbell, M. B. Bragg, N. A. Neogi. Fuel-optimal trajectory generation for persistent contrail mitigation [J]. J. Gud. Control. Dyn., 2013, 36(6): 1741–1750.Google Scholar
  15. [15]
    A. U. Raghunathan, V. Gopal, D. Subramanian, et al. Dynamic optimization strategies for three-dimensional conflict resolution ofmultiple aircraft [J]. J. Guid. Control. Dyn., 2004, 27(4): 586–594.Google Scholar
  16. [16]
    T. R. Jorris, R. G. Cobb. multiple method 2-D trajectory optimization satisfying waypoints and no-fly zone constraints [J]. J. Guid. Control. Dyn., 2008, 31(3): 543–553.Google Scholar
  17. [17]
    S. Griffiths, J. Saunders, A. Curtis, et al. Maximizing miniature aerial vehicles [J]. IEEE Robot. Autom. Mag., 2006, 13(3): 34–43.Google Scholar
  18. [18]
    M. Kothari, I. Postlethwaite. A probabilistically robust path planning algorithm for UAVs using rapidly-exploring Rrandom trees [J]. J. Intell. Robot. Syst., 2013, 71(2): 231–253.Google Scholar
  19. [19]
    J. Kuffner, S. LaValle. RRT-connect: An efficient approach to singlequery path planning [C]//Proc. 2000 ICRA. Millenn. Conf. IEEE Int. Conf. Robot. Autom. Symp. Proc. (Cat. No. 00CH37065), San Francisco, 2000, 2(4): 995–1001.Google Scholar
  20. [20]
    I. Nikolos, K. Valavanis, N. Tsourveloudis, et al. Evolutionary algorithm based offline/online path planner for uav navigation [J]. IEEE Trans. Syst. Man Cybern. Part B, 2003, 33(6): 898–912.Google Scholar
  21. [21]
    Y. V. Pehlivanoglu. A new vibrational genetic algorithm enhanced with a Voronoi diagram for path planning of autonomous UAV [J]. Aerosp. Sci. Technol., 2012, 16(1): 47–55.Google Scholar
  22. [22]
    Y. Fu, M. Ding, C. Zhou. Phase angle-encoded and quantum-behaved particle swarm optimization applied to three-dimensional route planning for UAV [J]. IEEE Trans. Syst. Man Cybern. Part A Syst. Humans, 2012, 42(2): 511–526.Google Scholar
  23. [23]
    Y. Fu, M. Ding, C. Zhou, et al. Route planning for unmanned aerial vehicle (UAV) on the sea using hybrid differential evolution and quantum-behaved particle swarm optimization [J]. IEEE Trans. Syst. Man, Cybern. Syst., 2013, 43(6): 1451–1465.Google Scholar
  24. [24]
    C. Xu, H. Duan, F. Liu. Chaotic artificial bee colony approach to Uninhabited Combat Air Vehicle (UCAV) path planning [J]. Aerosp. Sci. Technol., 2010, 14(8): 535–541.Google Scholar
  25. [25]
    K. Zeghal. A review of different approaches based on force fields for airborne conflict resolution [C]//Guid. Navig. Control Conf. Exhib. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1998: 818–827.Google Scholar
  26. [26]
    J. Hu, M. Prandini, S. Sastry. Optimal coordinated maneuvers for three-dimensional aircraft conflict resolution [J]. J. Guid. Control. Dyn., 2002, 25(5): 888–900.Google Scholar
  27. [27]
    J. W. Park, H. D. Oh, M. J. Tahk. UAV collision avoidance based on geometric approach [C]//2008 SICE Annu. Conf., Tokyo, 2008: 2122–2126.Google Scholar
  28. [28]
    L. Pallottino, E. Feron, A. Bicchi. Conflict resolution problems for air traffic management systems solved with mixed integer programming [J]. IEEE Trans. Intell. Transp. Syst., 2002, 3(1): 3–11.Google Scholar
  29. [29]
    J. Rong, S. J. Geng, J. Valasek, et al. Air traffic conflict negotiation and resolution using an onboard multi-agent system [C]//Proceedings. 21st Digit. Avion. Syst. Conf., Irvine, CA, 2002: 1–12.Google Scholar
  30. [30]
    S. Wollkind, J. Valasek, T. Ioerger. Automated conflict resolution for air traffic management using cooperative multiagent negotiation [C]//AIAA Guid. Navig. Control Conf. Exhib., Reston, Virigina: American Institute of Aeronautics and Astronautics, 2004, 4992(8): 1–11.Google Scholar
  31. [31]
    D. Sislak, P. Volf, M. Pechoucek. Agent-based cooperative decentralized airplane-collision avoidance [J]. IEEE Trans. Intell. Transp. Syst., 2011, 12(1): 36–46.Google Scholar
  32. [32]
    S. Bortoff. Path planning for UAVs [C]//Proc. 2000 Am. Control Conf. ACC (IEEE Cat. No.00CH36334), Chicago, 2000(1): 364–368.Google Scholar
  33. [33]
    T. McLain, R. Beard. Trajectory planning for coordinated rendezvous of unmanned air vehicles [C]//AIAA Guid. Navig. Control Conf. Exhib., Dever, CO, U.S.A., 2000: A00–37126.Google Scholar
  34. [34]
    L. Zhu, X. Cheng, F. G. Yuan. A 3D collision avoidance strategy for UAV with physical constraints [J]. Measurement, 2016, 77: 40–49.Google Scholar
  35. [35]
    J. Sun, J. Tang, S. Lao. Collision avoidance for cooperative UAVs with optimized artificial potential field algorithm [J]. IEEE Access, 2017, (5):18382–18390.Google Scholar
  36. [36]
    D. McIntyre, W. Naeem, X. Xu. Cooperative obstacle avoidance using bidirectional artificial potential fields [C]//2016 UKACC Int. Conf. Control, Belfast, 2016: 1–6.Google Scholar
  37. [37]
    O. Montiel, U. Orozco-Rosas, R. Sepúlveda. Path planning for mobile robots using bacterial ptential field for avoiding static and dynamic obstacles [J]. Expert Syst. Appl., 2015, 42(12): 5177–5191.Google Scholar
  38. [38]
    K. D. Bilimoria. A geometric optimization approach to aircraft conflict resolution [J]. AIAA Guid. Navig. Control Conf. Exhib., 2000.Google Scholar
  39. [39]
    D. Alejo, J. A. Cobano, G. Heredia, et al. A reactive method for collision avoidance in industrial environments [J]. J. Intell. Robot. Syst. Theory Appl., 2016, 84(1-4): 745–758.Google Scholar
  40. [40]
    Y. I. Jenie, E. J. van Kampen, C. C. de Visser, et al. Selective velocity obstacle method for deconflicting maneuvers applied to unmanned aerial vehicles [J]. J. Guid. Control. Dyn., 2015, 38(6): 1140–1146.Google Scholar
  41. [41]
    Y. Watanabe, A. Calise, E. Johnson. Vision-based obstacle avoidance for UAVs [J]. AIAA Guid. Navig. Control Conf. Exhib., 2007.Google Scholar
  42. [42]
    C. Carbone, U. Ciniglio, F. Corraro, et al. A novel 3D geometric algorithm for aircraft autonomous collision avoidance [C]//Proc. 45th IEEE Conf. Decis. Control, San Diego, 2006: 1580–1585.Google Scholar
  43. [43]
    J. Yang, D. Yin, L. Shen. Reciprocal geometric conflict resolution on unmanned aerial vehicles by heading control [J]. J. Guid. Control. Dyn., 2017, 40(10): 2511–2523.Google Scholar
  44. [44]
    S. C. Han, H. Bang, C. S. Yoo. Proportional navigation-based collision avoidance for UAVs [J]. Int. J. Control. Autom. Syst., 2009, 7(4): 553–565.Google Scholar
  45. [45]
    H. CHOI, Y. KIM, Y. LEE, et al. A reactive collision avoidance algorithm for multiple midair unmanned aerial vehicles [J]. Trans. Jpn. Soc. Aeronaut. Space Sci., 2013, 56(1): 15–24.Google Scholar
  46. [46]
    E. Lalish, K. A. Morgansen, T. Tsukamaki. Decentralized reactive collision avoidance for multiple unicycle-type vehicles [C]//Proc. Am. Control Conf., Seattle, 2008: 5055–5061.Google Scholar
  47. [47]
    S. Temizer, M. Kochenderfer, L. Kaelbling, et al. Collision avoidance for unmanned aircraft using Markov decision processes [C]//AIAA Guid. Navig. Control Conf., Toronto, ON, Canada, 2010: 1–22.Google Scholar
  48. [48]
    J. P. Chryssanthacopoulos, M. J. Kochenderfer. Decomposition methods for optimized collision avoidance with multiple threats [C]//AIAA/IEEE Digit. Avion. Syst. Conf. Proc., Seattle, WA, USA, 2011: 1B2–1.Google Scholar
  49. [49]
    M. J. Kochenderfer, J. Chryssanthacopoulos. Robust airborne collision avoidance through dynamic programming [R]. Massachusetts Institute of Technology, Lincoln Laboratory, Project Report ATC-371, 2011.Google Scholar
  50. [50]
    Y. Lin, S. Saripalli. Sampling-based path planning for UAV collision avoidance [J]. IEEE Trans. Intell. Transp. Syst., 2017, 18(11): 3179–3192.Google Scholar
  51. [51]
    H. T. Chiang, N. Malone, K. Lesser, et al. Path-guided artificial potential fields with stochastic reachable sets for motion planning in highly dynamic environments [C]//IEEE Int. Conf. Robot. Autom., Seattle, 2015: 2347–2354.Google Scholar
  52. [52]
    X. Ren, S. Liu. Combining extended Kalman filter with complementary filter for UAV attitude estimation based on MEMSMARG sensors [C]//Int. ForumManag. Educ. Inf. Technol. Appl., Guangzhou, China, 2016: 746–752.Google Scholar
  53. [53]
    T. Zsedrovits, P. Bauer, A. Hiba, et al. Performance analysis of camera rotation estimation algorithms in multi-sensor fusion for unmanned aircraft attitude estimation [J]. Intell. Robot. Syst., 2016, 84(1-4): 1–19.Google Scholar
  54. [54]
    J. N. Gross, Y. Gu, M. B. Rhudy. Robust UAV relative navigation with DGPS, INS, and peer-to-peer radio ranging [J]. IEEE Trans. Autom. Sci. Eng., 2015, 12(3): 935–944.Google Scholar
  55. [55]
    N. Gageik, P. Benz, S. Montenegro. Obstacle detection and collision avoidance for a UAV with complementary cow-cost sensors [J]. IEEE Access, 2015, 3: 599–609.Google Scholar
  56. [56]
    S. Zhu, D. Wang, B. L. Chang. Cooperative control of multiple UAVs for moving source seeking [J]. J. Intell. Robot. Syst., 2014, 74(1-2): 333–346.Google Scholar
  57. [57]
    R. Zou, V. Kalivarapu, E. Winer, et al. Particle swarm optimizationbased source seeking [J]. IEEE Trans. Autom. Sci. Eng., 2015, 12(3): 865–875.Google Scholar
  58. [58]
    G. Feng, Y. He, J. Han. Active persistent localization of a threedimensional moving target under set-membership uncertainty description through cooperation of multiple mobile robots [J]. IEEE Trans. Ind. Electron., 2015, 62(8): 4958–4971.Google Scholar
  59. [59]
    W. Lee, H. Bang, H. Leeghim. Cooperative localization between small UAVs using a combination of heterogeneous sensors [J]. Aerosp. Sci. Technol., 2013, 27(1): 105–111.Google Scholar
  60. [60]
    Y. Zeng, R. Zhang, J. L. Teng. Wireless communications with unmanned aerial vehicles: Opportunities and challenges [J]. IEEE Commun. Mag., 2016, 54(5): 36–42.Google Scholar
  61. [61]
    Command and Control(c2) Data link Mini-mum operational performance standards (MOPS) (Terrestri-al), RTCA Std. DO-362, 2016.Google Scholar
  62. [62]
    L. Gupta, R. Jain, G. Vaszkun. Survey of important issues in UAV communication networks [J]. IEEE Commun. Surv. Tutorials, 2016, 18(2): 1123–1152.Google Scholar
  63. [63]
    D. W. Matolak. Air-ground channels & models: Comprehensive review and considerations for unmanned aircraft systems [C]//2012 IEEE Aerosp. Conf., Big Sky, 2012: 1–17.Google Scholar
  64. [64]
    D. W. Matolak, R. Sun. Air-ground channel characterization for unmanned aircraft systems—Part I: Methods, measurements, and models for over-water settings [J]. IEEE Trans. Veh. Technol., 2017, 66(1): 26–44.Google Scholar
  65. [65]
    R. Sun, D. Matolak. Air-ground channel characterization for unmanned aircraft systems—Part II: Hilly & mountainous settings [J]. IEEE Trans. Veh. Technol., 2017, 66(3): 1913–1925.Google Scholar
  66. [66]
    D. W. Matolak, R. Sun. Air-ground channel characterization for unmanned aircraft aystems—Part III: The suburban and near-rrban environments [J]. IEEE Trans. Veh. Technol., 2017, 66(8): 6607–6618.Google Scholar
  67. [67]
    R. Sun, D. W. Matolak, W. Rayess. Air-ground channel characterization for unmanned aircraft systems—Part IV: Airframe shadowing [J]. IEEE Trans. Veh. Technol., 2017, 66(9): 7643–7652.Google Scholar
  68. [68]
    J. H. Griner, R. J. Kerczewski. Communications for UAS integration in the NAS phase 2—Satellite communications and terrestrial extension [C]//2017 Integr. Commun. Navig. Surveill. Conf., Herndon, 2017: 4A4–1–4A4–8.Google Scholar
  69. [69]
    R. J. Kerczewski, J. D. Wilson, W. D. Bishop. Parameter impact on sharing studies between UAS CNPC satellite transmitters and terrestrial systems [C]//2015 Integr. Commun. Navig. Surveill. Conf., Herdon, 2015: X2–1–X2–11.Google Scholar
  70. [70]
    R. J. Kerczewski, J. D. Wilson, W. D. Bishop. UAS CNPC satellite link performance—Sharing spectrum with terrestrial systems [C]//2016 IEEE Aerosp. Conf., Big Sky, 2016: 1–9.Google Scholar
  71. [71]
    R. J. Kerczewski, J. H. Griner, W. D. Bishop, et al. Progress on the development of the UAS C2 link and supporting spectrum—from LOS to BLOS [C]//2017 IEEE Aerosp. Conf., Big Sky, 2017: 1–9.Google Scholar
  72. [72]
    D. C. Iannicca, D. P. Young, S. K. Thadhani, et al. Security risk assessment process for UAS in the NAS CNPC architecture [C]//2013 Integr. Commun. Navig. Surveill. Conf., Herndon, 2013: 1–9.Google Scholar
  73. [73]
    G. Wang, B.-S. Lee, J. Y. Ahn. Authentication and key management in an LTE-based unmanned aerial system control and non-payload communication network [C]//2016 IEEE 4th Int. Conf. Futur. Internet Things Cloud Work, Vienna, 2016: 355–360.Google Scholar
  74. [74]
    T. C. Hong, K. Kang, K. Lim, et al. Network architecture for control and non-payload communication of UAV [C]//Int. Conf. Inf. Commun. Technol. Converg., Jeju, 2016: 762–764.Google Scholar
  75. [75]
    X. Liu, Z. Wei, Z. Feng, et al. UD-MAC: Delay tolerant multiple access control protocol for unmanned aerial vehicle networks [C]//2017 IEEE 28th Annu. Int. Symp. Pers. Indoor, Mob. Radio Commun., Montreal, 2017: 1–6.Google Scholar
  76. [76]
    M. Bryson, S. Sukkarieh. Architectures for cooperative airborne simultaneous localisation and mapping [J]. J. Intell. Robot. Syst., 2009, 55(4-5): 267–297.zbMATHGoogle Scholar
  77. [77]
    S. Goel, A. Kealy, V. Gikas, et al. Cooperative localization of unmanned aerial vehicles using GNSS,MEMS Inertial and UWB sensors [J]. J. Surv. Eng., 2017, 143(4).Google Scholar
  78. [78]
    D. Alejo, J. A. Cobano, G. Heredia, et al. Collision-free 4D trajectory planning in unmanned aerial vehicles for assembly and structure construction [J]. J. Intell. Robot. Syst., 2014, 73(1-4): 783–795.Google Scholar
  79. [79]
    Z. Jia, Z. Dong, Y. Liu. Mode design and control structure of manned/unmanned aerial vehicles cooperative engagement [C]//IEEE Int. Conf. Aircr. Util. Syst., 2016: 124–129.Google Scholar
  80. [80]
    A. S. Brand˜ao, M. Sarcinelli-Filho. On the guidance of multiple UAV using a centralized formation control scheme and delaunay triangulation [J]. J. Intell. Robot. Syst., 2016, 84(1-4): 397–413.Google Scholar
  81. [81]
    D. Alejo, J. A. Cobano, G. Heredia, et al. A reactive method for collision avoidance in industrial environments [J]. J. Intell. Robot. Syst., 2016, 84(1-4): 745C758.Google Scholar
  82. [82]
    X. Xiang, C. Liu, H. Su, et al. On decentralized adaptive full-order sliding mode control of multiple UAVs [J]. ISA Trans., 2017, 71: 196–205.Google Scholar
  83. [83]
    A. Franchi, P. Stegagno, G. Oriolo. Decentralized multi-robot encirclement of a 3D target with guaranteed collision avoidance [J]. Auton. Robots, 2015, 40(2): 1–21.Google Scholar
  84. [84]
    J.M. Daly, Y. Ma, S. L. Waslander. Coordinated landing of a quadrotor on a skid-steered ground vehicle in the presence of time delays [J]. Auton. Robots, 2014, 38(2): 179–191.Google Scholar
  85. [85]
    H. Yu, K. Meier, M. Argyle, et al. Cooperative path planning for target tracking in urban environments using unmanned air and ground vehicles [J]. IEEE/ASME Trans. Mechatronics, 2014, 20(2): 541–552.Google Scholar
  86. [86]
    M. Itkin, M. Kim, Y. Park. Development of cloud-based UAV monitoring and management system: [J]. Sensors, 2016, 16(11): 1913.Google Scholar
  87. [87]
    S. Jeong, O. Simeone, J. Kang. Mobile cloud computing with a UAVmounted cloudlet: Optimal bit allocation for communication and computation [J]. IET Commun., 2017, 11(7): 969–974.Google Scholar
  88. [88]
    D. Wu, D. I. Arkhipov, M. Kim, et al. ADDSEN: Adaptive data processing and dissemination for drone swarms in urban sensing [J]. IEEE Trans. Comput., 2017, 66(2): 183–198.MathSciNetzbMATHGoogle Scholar
  89. [89]
    J. Chakareski. Aerial UAV-IoT sensing for ubiquitous immersive communication and virtual human teleportation [EB]. INFOCOM 2017, 2017.Google Scholar
  90. [90]
    C. Gao, Z. Zhen, H. Gong. A self-organized search and attack algorithm for multiple unmanned aerial vehicles [J]. Aerosp. Sci. Technol., 2016, 54: 229–240.Google Scholar
  91. [91]
    W. Zhao, Q. Meng, P. W. Chung. A heuristic distributed task allocation method for multivehicle multitask problems and its application to search and rescue scenario [J]. IEEE Trans. Cybern., 2016, 46(4): 902–915.Google Scholar

Copyright information

© Posts & Telecom Press and Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Xuejun Zhang
    • 1
  • Yanshuang Du
    • 1
  • Bo Gu
    • 1
  • Guoqiang Xu
    • 1
  • Yongxiang Xia
    • 2
  1. 1.School of Electronic and Information Engineering, Beihang University. Beijing Key Laboratory for Network-based Cooperative Air Traffic Management.Beijing Laboratory for General Aviation TechnologyBeijingChina
  2. 2.College of Information Science and Electronic EngineeringZhejiang UniversityHangzhouChina

Personalised recommendations