State of Art: Vertical Handover Decision Schemes in Next-Generation Wireless Network

  • E. M. MalathyEmail author
  • Vijayalakshmi Muthuswamy
Review paper


The state of art pertaining to vertical handover decisions in next-generation wireless networks provides a detailed overview of vertical handover studies. This paper classifies the research initiatives under the vertical handover decision mechanism for heterogeneous wireless networks. A fair comparison of traditional and recent techniques is drafted to obtain direction of the vertical handover decision. Several issues related to seamless support on mobility management techniques have been described in the literature. The next-generation wireless network promises to offer enhanced data services compared to other networks in mobile communication. Since all next generation network (NGN) is an IP-based network, challenges drive toward providing quality of service in the handover process. The necessity of handover process is a seamless connection. The handover operations that minimize or even target the elimination of delay in new network connection establishment are most welcomed. However, frequent disconnection and inefficient seamless handovers result in handover operation failures. Most of the existing methods on handover decisions are based on mobile-controlled handovers. Here, the decisions are in-corporate in the mobile devices. Several mobile-controlled handovers take a single parameter or two or more additional parameters as a combination to evaluate the policy decision. These approaches are carefully studied and classified.


state of art vertical handover heterogeneous wireless network decision schemes classification 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M. Ismail, R. Nordin. Vertical handover solutions over LTE-advanced wireless networks: an overview [J]. Wireless Personal Communications, 2014, 77(4): 3051–3079.CrossRefGoogle Scholar
  2. [2]
    N. Nasser, A. Hasswa, H. Hassanein. Handoffs in fourth generation heterogeneous networks [J]. IEEE Communications Magazine, 2006, 44(10): 96–103.CrossRefGoogle Scholar
  3. [3]
    S. Mohanty, I. F. Akyildiz. A cross-layer (layer 2 + 3) handoff management protocol for next-generation wireless systems [J]. IEEE Transactions on Mobile Computing, 2006, 5(10): 1347–1360.CrossRefGoogle Scholar
  4. [4]
    Y. Wang, H. Haas. Dynamic load balancing with handover in hybrid Li-Fi and Wi-Fi networks [J]. Journal of Lightwave Technology, 2015, 33(22): 4671–4682.CrossRefGoogle Scholar
  5. [5]
    B. J. Chang, J. F. Chen. Cross-layer-based adaptive vertical handoff with predictive RSS in heterogeneous wireless networks [J]. IEEE Transactions on Vehicular Technology, 2008, 57(6): 3679–3692.CrossRefGoogle Scholar
  6. [6]
    X. Yan, N. Mani, Y. A. Sekercioglu. A traveling distance prediction based method to minimize unnecessary handovers from cellular networks to WLANs [J]. IEEE Communications Letters, 2008, 12(1): 14–16.CrossRefGoogle Scholar
  7. [7]
    R. Hussain, S. A. Malik, S. Abrar, et al. Vertical handover necessity estimation based on a new dwell time prediction model for minimizing unnecessary handovers to a WLAN cell [J]. Wireless Personal Communications, 2013, 71(2): 1217–1230.CrossRefGoogle Scholar
  8. [8]
    T. M. D. Ali, M. Saquib. Analytical framework for WLAN-cellular voice handover evaluation [J]. IEEE Transactions on Mobile Computing, 2013, 12(3): 447–460.CrossRefGoogle Scholar
  9. [9]
    X. Yan, Y. A. Sekercioglu, S. Narayanan. A survey of vertical handover decision algorithms in Fourth Generation heterogeneous wireless networks [J]. Computer Networks, 2010, 54(11): 1848–1863.CrossRefzbMATHGoogle Scholar
  10. [10]
    S. K. Lee, K. Sriram, K. Kim, et al. Vertical handoff decision algorithms for providing optimized performance in heterogeneous wireless networks [J]. IEEE Transactions on Vehicular Technology, 2009, 58(2): 865–881.CrossRefGoogle Scholar
  11. [11]
    M. M. Q. Al-Ghadi, I. M. Ababneh, W. E. Mardini. Performance study of SINR scheme for Vertical Handoff in wireless networks [J]. Information & Communication Systems, 2011: 137.Google Scholar
  12. [12]
    D. Ma, M. Ma. A QoS oriented vertical handoff scheme for WiMAX/WLAN overlay networks [J]. IEEE Transactions on Parallel and Distributed Systems, 2012, 23(4): 598–606.CrossRefGoogle Scholar
  13. [13]
    D. W. Lee, G. T. Gil, D. H. Kim. A cost-based adaptive handover hysteresis scheme to minimize the handover failure rate in 3GPP LTE system [J]. EURASIP Journal on Wireless Communications and Networking, 2010, 2010(1): 750173.CrossRefGoogle Scholar
  14. [14]
    K. H. Hong, S. K. Lee, L. Y. Kim, et al. Cost-based vertical handover decision algorithm for WWAN/WLAN integrated networks [J]. EURASIP Journal on Wireless Communications and Networking, 2009, 2009: 15.CrossRefGoogle Scholar
  15. [15]
    D. He, C. Chi, S. Chan, et al. A simple and robust vertical handoff algorithm for heterogeneous wireless mobile networks [J]. Wireless Personal Communications, 2011, 59(2): 361–373.CrossRefGoogle Scholar
  16. [16]
    R. M. Rodr´iguez-Dagnino, H. Takagi. Application of renewal theory to call handover counting and dynamic location management in cellular mobile networks [J]. European Journal of Operational Research, 2010, 204(1): 1–13.CrossRefzbMATHGoogle Scholar
  17. [17]
    E. A. Alyousfi, M. M. Alkhawlani. Optimization of vertical handover performance using elimination based MCDM algorithm [J]. Journal of Science & Technology, 2016, 21(1).Google Scholar
  18. [18]
    Z. Becvar, P. Mach, B. Simak. Improvement of handover prediction in mobile WiMAX by using two thresholds [J]. Computer Networks, 2011, 55(16): 3759–3773.CrossRefGoogle Scholar
  19. [19]
    R. M. Abdullah, A. Abdullah, N. A. W. A. Hamid, et al. A network selection algorithm based on enhanced access router discovery in heterogeneous wireless networks [J]. Wireless Personal Communications, 2014, 77(3): 1733–1750.CrossRefGoogle Scholar
  20. [20]
    Y. Zhang, L. Chen, Z. Zheng. A utility-based optimal joint call admission control scheme with vertical handoff in heterogeneous wireless networks [J]. Journal of Computers, 2013, 8(12): 3152–3159.CrossRefGoogle Scholar
  21. [21]
    M. N. Hindia, A. W. Reza, K. A. Noordin, et al. Enhanced seamless handover algorithm for WiMAX and LTE roaming [J]. Advances in Electrical and Computer Engineering, 2014, 14(4): 9–14.CrossRefGoogle Scholar
  22. [22]
    S. Liang, Y. Zhang, B. Fan, et al. Multi-attribute vertical handover decision-making algorithm in a hybrid VLC-femto system [J]. IEEE Communications Letters, 2017, 21(7): 1521–1524.CrossRefGoogle Scholar
  23. [23]
    T. Ali, M. Saquib. Analysis of an instantaneous packet loss based vertical handover algorithm for heterogeneous wireless networks [J]. IEEE Transactions on Mobile Computing, 2014, 13(5): 992–1006.CrossRefGoogle Scholar
  24. [24]
    C. L. Yang, J. X. Wang, H. Yu, et al. A velocity and transmission environment based handover algorithm for heterogeneous networks [J]. Applied Mechanics & Materials, 2014, 548-549: 1359–1362.CrossRefGoogle Scholar
  25. [25]
    H. H. Choi. An optimal handover decision for throughput enhancement [J]. IEEE Communications Letters, 2010, 14(9): 851–853.CrossRefGoogle Scholar
  26. [26]
    P. Bellavista, A. Corradi, L. Foschini. Context-aware handoff middleware for transparent service continuity in wireless networks [J]. Pervasive and Mobile Computing, 2007, 3(4): 439–466.CrossRefGoogle Scholar
  27. [27]
    M. Zekri, B. Jouaber, D. Zeghlache. Context aware vertical handover decision making in heterogeneous wireless Networks [C]//IEEE 35th Conference on Local Computer Networks (LCN), Denver, 2010: 764–768.CrossRefGoogle Scholar
  28. [28]
    S. Lahde, M. Doering, L. Wolf. Dynamic transport layer handover for heterogeneous communication environments [J]. Computer Communications, 2007, 30(17): 3232–3238.CrossRefGoogle Scholar
  29. [29]
    H. Alhazmi, N. Akkari. An overview of context-aware vertical handover schemes in heterogeneous networks [J]. International Journal of Computer Science & Engineering Survey, 2011, 2(4): 33–44.CrossRefGoogle Scholar
  30. [30]
    A. Sarma, S. Chakraborty, S. Nandi. Deciding handover points based on context-aware load balancing in a WiFi-WiMAX heterogeneous network environment [J]. IEEE Transactions on Vehicular Technology, 2016, 65(1): 348–357.CrossRefGoogle Scholar
  31. [31]
    O. Khattab, O. Alani. A survey on media independent handover (MIH) and IP multimedia subsystem (IMS) in heterogeneous wireless networks [J]. International Journal of Wireless Information Networks, 2013, 20(3): 215–228.CrossRefGoogle Scholar
  32. [32]
    Y. Kim, S. Pack, C. G. Kang, et al. An enhanced information server for seamless vertical handover in IEEE 802.21 MIH networks [J]. Computer Networks, 2011, 55(1): 147–158.CrossRefGoogle Scholar
  33. [33]
    Y. K. Salih, O. H. See, S. Yussof. MIH: state of art and a proposed future direction in the heterogeneous wireless networks [J]. Journal of Applied Sciences, 2012, 12(13): 1318–1331.CrossRefGoogle Scholar
  34. [34]
    M. Khan, K. Han. A Review of handover techniques in wireless Ad hoc networks based on IEEE 802.21 media independent handover standard [J]. IETE Technical Review, 2014, 31(5): 353–361.CrossRefGoogle Scholar
  35. [35]
    E. M. Malathy, M. Vijayalakshmi. Knapsack-TOPSIS technique for vertical handover in heterogeneous wireless network [J]. PloS One, 2015, 10(8): 1–16.CrossRefGoogle Scholar
  36. [36]
    J. Zhou, C. Y. Zhu. Compensatory analysis and optimization for MADM for heterogeneous wireless network selection [J]. Journal of Electrical and Computer Engineering, 2016, 2016: 7539454.CrossRefGoogle Scholar
  37. [37]
    A. Chinnappan, R. Balasubramanian. ComplexityCconsistency tradeoff in multi-attribute decision making for vertical handover in heterogeneous wireless networks [J]. IET Networks, 2016, 5(1): 13–21.CrossRefGoogle Scholar
  38. [38]
    E. S. Navarro, J. D. Morales, U. P. Rico. Evaluation of vertical handoff decision algorightms based on madm methods for heterogeneous wireless networks [J]. Journal of Applied Research and Technology, 2012, 10(4): 534–548.Google Scholar
  39. [39]
    G. Tamea, M. Biagi, S. Member, et al. Soft multi-criteria decision algorithm for vertical handover in heterogeneous networks [J]. IEEE Communications Letters, 2011, 15(11): 1215–1217.CrossRefGoogle Scholar
  40. [40]
    I. Chamodrakas, D. Martakos. A utility-based fuzzy TOPSIS method for energy efficient network selection in heterogeneous wireless networks [J]. Applied Soft Computing, 2012, 12(7): 1929–1938.CrossRefGoogle Scholar
  41. [41]
    M. Kumru, P. Y. Kumru. A fuzzy ANP model for the selection of 3D coordinate-measuring machine [J]. Journal of Intelligent Manufacturing, 2015, 26(5): 999–1010.CrossRefGoogle Scholar
  42. [42]
    R. Trestian, O. Ormond, G. M. Muntean. Performance evaluation of MADM-based methods for network selection in a multimedia wireless environment [J]. Wireless Networks, 2015, 21(5): 1745–1763.CrossRefGoogle Scholar
  43. [43]
    R. Trestian, O. Ormond, G. M. Muntean. Enhanced power-friendly access network selection strategy for multimedia delivery over heterogeneous wireless networks [J]. IEEE Transactions on Broadcasting, 2014, 60(1): 85–101.CrossRefGoogle Scholar
  44. [44]
    J. Márquez-Barja, C. T. Calafate, J. C. Cano, et al. An overview of vertical handover techniques: Algorithms, protocols and tools [J]. Computer Communications, 2011, 34(8): 985–997.CrossRefGoogle Scholar
  45. [45]
    M. Elhoseny, A. Tharwat, A. Farouk, et al. K-coverage model based on genetic algorithm to extend wsn lifetime [J]. IEEE Sensors Letters, 2017, 1(4): 1–4.CrossRefGoogle Scholar
  46. [46]
    X. Yuan, M. Elhoseny, H. K. El-Minir, et al. A genetic algorithmbased, dynamic clustering method towards improved WSN longevity [J]. Journal of Network and Systems Management, 2017, 25(1): 21–46.CrossRefGoogle Scholar
  47. [47]
    M. A. Ben-Mubarak, B. M. Ali, N. K. Noordin, et al, Fuzzy logic based self-adaptive handover algorithm for mobileWiMAX [J]. Wireless Personal Communications, 2013, 71(2): 1421–1442.CrossRefGoogle Scholar
  48. [48]
    V. Kantubukta, S. Maheshwari, S. Mahapatra, et al. Energy and quality of service aware FUZZY-technique for order preference by similarity to ideal solution based vertical handover decision algorithm for heterogeneous wireless networks [J]. IET Networks, 2013, 2(3): 103–114.CrossRefGoogle Scholar
  49. [49]
    M. Zekri, B. Jouaber, D. Zeghlache. A review on mobility management and vertical handover solutions over heterogeneous wireless networks [J]. Computer Communications, 2012, 35(17): 2055–2068.CrossRefGoogle Scholar
  50. [50]
    A. G. Mahira, M. S. Subhedar. Handover decision in wireless heterogeneous networks based on feedforward artificial neural network [M]//Computational Intelligence in Data Mining. Springer, Singapore, 2017: 663–669.CrossRefGoogle Scholar
  51. [51]
    A. S. Sadiq, K. A. Bakar. A fuzzy logic approach for reducing handover latency in wireless networks [J]. Network Protocols and Algorithms, 2011, 2(4): 61–87.Google Scholar
  52. [52]
    C. A. Sgora, A. Gizelis, D. D. Vergados. Network selection in a WiMAXCWiFi environment [J]. Pervasive and Mobile computing, 2011, 7(5): 584–594.CrossRefGoogle Scholar
  53. [53]
    M. Sharma, R. K. Khola. Fuzzy logic based handover decision system [J]. International journal of Ad hoc, Sensor & Ubiquitous Computing, 2012, 3(4): 21–29.CrossRefGoogle Scholar
  54. [54]
    M. Elhoseny, X. Yuan, Z. Yu, et al. Balancing energy consumption in heterogeneous wireless sensor networks using genetic algorithm [J]. IEEE Communications Letters, 2015, 19(12): 2194–2197.CrossRefGoogle Scholar

Copyright information

© Posts & Telecom Press and Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of Information TechnologySSN College of EngineeringNew DelhiIndia
  2. 2.Department of Information Science and Technology, College of EngineeringAnna UniversityAnnaIndia

Personalised recommendations