Multiple Fan-Beam Antenna Array for Massive MIMO Applications

Review paper
  • 45 Downloads

Abstract

In this paper, a multiple fan-beam antenna array is proposed for massive multiple-input multipleoutput (MIMO) applications. The proposed array is based on vertical spatial filtering to reduce radio frequency complexity in a massive MIMO system. A microstrip line feeding network is utilized to achieve a specific phase distribution for multiple fan beams. A 64-element antenna array is designed and fabricated to validate the design strategy. The proposed antenna array uses 16 ports to excite 64 antenna elements, which is more cost effective than traditional massive MIMO systems. The measured results demonstrate that the proposed antenna array can achieve two fan beams at 7 in the vertical dimension, and the measured gain of every port exceeds 10 dBi at 2.6 GHz.

Keywords

multiple fan beams antenna array low RF complexity massive MIMO 

References

  1. [1]
    X. Gao, O. Edfors, F. Tufvesson, et al. Massive MIMO in real propagation environments: do all antennas contribute equally [J]. IEEE Transactions on Communications, 2015, 63(11): 3917–3928.CrossRefGoogle Scholar
  2. [2]
    H. Q. Ngo, E. G. Larsson, T. L. Marzetta. Energy and spectral efficiency of very large multiuser MIMO systems [J]. IEEE Transactions on Communications, 2013, 61(4): 1436–1449.CrossRefGoogle Scholar
  3. [3]
    H. Huh, G. Caire, H.C. Papadopoulos, et al. Achieving“massive MIMO” spectral efficiency with a not-so-large number of antennas [J]. IEEE Transactions on Wireless Communications, 2012, 11(9): 3226–3239.CrossRefGoogle Scholar
  4. [4]
    C. Guthy, W. Utschick, M. L. Honig. Large system analysis of sum capacity in the Gaussian MIMO broadcast channel [J]. IEEE Journal on Selected Areas in Communications, 2013, 31(2): 149–159.CrossRefGoogle Scholar
  5. [5]
    E. Bjornson, M. Kountouris, M. Debbah. Massive MIMO and small cells: Improving energy efficiency by optimal soft-cell coordination [C]//International Conference on Telecommunications, Morocco, 2013: 1–5.Google Scholar
  6. [6]
    A. F. Molisch, M. Z. Win, J. H. Winters. Redcued-complexity transmit/receive-diversity systems [J]. IEEE Transactions on Signal Processing, 2003, 51(11): 2729–2738.MathSciNetCrossRefMATHGoogle Scholar
  7. [7]
    A. F. Molisch, X. Zhang, S. Y. Kung, et al. DFT-based hybrid antenna selection schemes for spatially correlated MIMO channels [J]. IEEE Communications Letters, 2003, 8(1): 36–38.CrossRefGoogle Scholar
  8. [8]
    X. Zhang, Z. Lv, W. Wang. Performance analysis of multiuser diverisity in MIMO systems with antenna selection [J]. IEEE Transactions on Wireless Communications, 2008, 7(1): 15–21.CrossRefGoogle Scholar
  9. [9]
    M. D. Renzo, H. Haas, A. Ghrayeb, et al. Spatial modulation for generalized MIMO: challenges, opportunities, and implementation [J]. Proceedings of the IEEE, 2014, 102(1): 56–103.CrossRefGoogle Scholar
  10. [10]
    P. Yang, M. D. Renzo, Y. Xiao, et al. Design guidelines for spatial modulation [J]. IEEE Communications Surveys & Tutorials, 2014, 17 (1): 6–26.CrossRefGoogle Scholar
  11. [11]
    Y. Zeng, R. Zhang, Z. N. Chen. Electromagnetic lens-focusing antenna enabled massive MIMO: performance improvement and cost reduction [J]. IEEE Journal on Selected Areas in Communications, 2013, 32(6): 1194–1206.CrossRefGoogle Scholar
  12. [12]
    P. V. Amadori, C. Masouros. Low RF-complexity millimeter-wave beamspace-MIMO systems by beam selection [J]. IEEE Transactions on Communications, 2015, 63(6): 2212–2223.CrossRefGoogle Scholar
  13. [13]
    P. Liu, Z. Zhang, Y. Li, et al. A dual-beam eight-element antenna array with compact CPWG crossover structure [J]. IEEE Antennas & Wireless Propagation Letters, 2016, 16: 1269–1272.CrossRefGoogle Scholar
  14. [14]
    X. Jiang, H. Wang, Z. Zhang, et al. Low RF-complexity massive MIMO systems based on vertical spatial filtering for urban macro cellular networks [J]. IEEE Transactions on Vehicular Technology, 2017, 66(10): 9214–9225.CrossRefGoogle Scholar
  15. [15]
    Anaren, Model 1P603AS: Hybrid Couplers [EB/OL]. https://cdn. anaren.com/product-documents/Xinger/90DegreeHybridCouplers/ 1P603AS/1P603AS DataSheet(Rev A).pdf.Google Scholar
  16. [16]
    Anaren, Model X2BS: SMT Crossover [EB/OL]. https: //cdn.anaren.com/product-documents/Xinger/RFCrossovers/X2BS/ X2BS DataSheet(Rev C).pdf.Google Scholar

Copyright information

© Posts & Telecom Press and Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of Electronic EngineeringTsinghua UniversityBeijingChina

Personalised recommendations