Journal of Hardware and Systems Security

, Volume 3, Issue 4, pp 426–439 | Cite as

Implementation-Based Design Fingerprinting for Robust IC Fraud Detection

  • James SheyEmail author
  • Naghmeh Karimi
  • Ryan Robucci
  • Chintan Patel


With the global spanning of integrated circuit (IC) and electronic device supply chains, the ability of an untrusted foundry to alter a design for intellectual property (IP)/IC piracy increases. To tackle this threat, this paper proposes a design-based fingerprinting methodology based on machine learning schemes. The proposed method considers the effect of process variations, measurement noise, and device aging. The proposed fingerprinting scheme can identify if the circuit is original or has been altered by an adversary to hide piracy. Changing a gate to an equivalent counterpart does not change the functionality of the circuit and we assess these as altered circuits. Altering the circuit can arise if an adversary gains access to the register-transfer level (RTL) or netlist of a design in an untrusted supply chain or uses the datasheet to implement a functionally equivalent design. Experimentally we determine that our method can detect a pirated chip with near 100% accuracy when classifying new ICs, and above 96% accuracy when classifying at any age up to 7 years in the presence of noise if at least 2.5% of the gates in the IC have been altered by an adversary.


IC aging IP piracy Fingerprinting Side-channel power analysis Machine learning 



We would like to thank Brien Croteau for his help developing ideas.


  1. 1.
    Tehranipoor M, Koushanfar F (2010) A survey of hardware trojan taxonomy and detection. IEEE Des Test of Comput 27(1):10–25. CrossRefGoogle Scholar
  2. 2.
    Liu B, Jin Y, Qu G (2015) Hardware design and verification techniques for supply chain risk mitigation. In: International Conference Computer-Aided Design and Computer Graphics (CAD/Graphics), pp 238–239.
  3. 3.
    Ni M, Gao Z (2004) Watermarking system for IC design IP protection. International Conference on Communications, circuits and system vol 2, pp 1186–1190.
  4. 4.
    Marchand C, Bossuet L, Jung E (2014) IP watermark verification based on power consumption analysis. In: IEEE International System-on-Chip Conf. (SOCC), pp 330–335.
  5. 5.
    Shey J, Karimi N, Robucci R, Patel C (2018) Design-based fingerprinting using side-channel power analysis for protection against IC piracy. In: Proceedings of IEEE International Symposium on VLSI ISVLSIGoogle Scholar
  6. 6.
    Rostami M, Koushanfar F, Karri R (2014) A primer on hardware security: models, methods, and metrics. Proc IEEE 102(8):1283–1295. CrossRefGoogle Scholar
  7. 7.
    Liu M, Kim CH (2017) A powerless and non-volatile counterfeit IC detection sensor in a standard logic process based on an exposed floating-gate array. In: Symposium on VLSI Technology, pp T102–T103.
  8. 8.
    Newbould RD, Carothers JD, Rodriguez JJ, Holman WT (2002) A hierarchy of physical design watermarking schemes for intellectual property protection of IC designs. In: IEEE International Symposium Circuits and System, pp IV–862–IV–865
  9. 9.
    Bai F, Gao Z, Xu Y, Cai X (2007) A watermarking technique for hard IP protection in full-custom IC design. in: Int. Conf. Comms, Circuits and Systems, pp 1177–1180.
  10. 10.
    Xu W, Zhu Y (2011) A digital copyright protection scheme for soft-IP core based on FSMs. in: Int. Conf. Consumer Electronics, Communications and Networks (CECNet), pp 3823-3826.
  11. 11.
    Echavarria J, Morales-Reyes A, Cumplido R, Salido MA (2014) FSM merging and reduction for IP cores watermarking using genetic algorithms. In: International Conference on ReConFigurable Computing and FPGAs (ReConFig14), pp 1–7.
  12. 12.
    Lin M, Tsai G, Wu C, Lin C (2007) Watermarking technique for HDL-based IP module protection. In: International Conf. on intelligent information hiding and multimedia signal processing (IIH-MSP 2007), vol 2, pp 393–396.
  13. 13.
    Huang X, Cui A, Chang C (2017) A new watermarking scheme on scan chain ordering for hard IP protection. In: IEEE International Symposium on Circuits and Systems (ISCAS), pp 1–4.
  14. 14.
    Qu G (2002) Publicly detectable watermarking for intellectual property authentication in VLSI design. IEEE Trans Comput-Aided Des Integr Circ Syst 21(11):1363–1368. CrossRefGoogle Scholar
  15. 15.
    Yu Q, Dofe J, Zhang Z (2017) Exploiting hardware obfuscation methods to prevent and detect hardware trojans. In: IEEE International Midwest Symposium on Circuits and System (MWSCAS), pp 819–822.
  16. 16.
    Koteshwara S, Kim CH, Parhi KK (2018) Key-based dynamic functional obfuscation of integrated circuits using sequentially triggered mode-based design. IEEE Trans Inf Forens Secur 13(1):79–93. CrossRefGoogle Scholar
  17. 17.
    Wei S, Nahapetian A, Potkonjak M (2011) Robust passive hardware metering. In: IEEE/ACM International Conference Computer-Aided Design (ICCAD), pp 802–809.
  18. 18.
    Koushanfar F (2012) Hardware metering: a survey, pp 103–122. Springer, New York. Google Scholar
  19. 19.
    Chakraborty RS, Bhunia S (2009) Harpoon: an obfuscation-based soc design methodology for hardware protection. IEEE Trans Comput-Aided Des Integr Circ Syst 28(10):1493–1502. CrossRefGoogle Scholar
  20. 20.
    Roy DB, Bhasin S, Nikolić I, Mukhopadhyay D (2019) Combining puf with rluts: a two-party pay-per-device ip licensing scheme on fpgas. ACM Trans Embed Comput Syst 18(2):12:1–12:22. CrossRefGoogle Scholar
  21. 21.
    Agrawal D, Baktir S, Karakoyunlu D, Rohatgi P, Sunar B (2007) Trojan detection using IC fingerprinting. In: IEEE Symposium Security Privacy, pp 296–310.
  22. 22.
    He J, Zhao Y, Guo X, Jin Y (2017) Hardware trojan detection through chip-free electromagnetic side-channel statistical analysis. IEEE Trans Very Large Scale Integr (VLSI) Syst 25(10):2939–2948. CrossRefGoogle Scholar
  23. 23.
    Jin Y, Makris Y (2008) Hardware trojan detection using path delay fingerprint. In: IEEE International Workshop on Hardware-Oriented Security and Trust, pp 51–57.
  24. 24.
    Vaikuntapu R, Bhargava L, Sahula V (2016) Golden IC free methodology for hardware trojan detection using symmetric path delays. In: International Symposium on VLSI Design and Test (VDAT), pp 1–2.
  25. 25.
    Huang K, Liu Y, Korolija N, Carulli JM, Makris Y (2015) Recycled IC detection based on statistical methods. IEEE Trans Comput-Aided Des Integr Circ Syst 34(6):947–960. CrossRefGoogle Scholar
  26. 26.
    Guo Z, Xu X, Rahman MT, Tehranipoor MM, Forte D (2018) SCARe: an SRAM-based countermeasure against IC recycling. IEEE Trans Very Large Scale Integr (VLSI) Syst 26(4):744–755. CrossRefGoogle Scholar
  27. 27.
    Guin U, Forte D, Tehranipoor M (2016) Design of accurate low-cost on-chip structures for protecting integrated circuits against recycling. IEEE Trans Very Large Scale Integr (VLSI) Syst 24(4):1233–1246. CrossRefGoogle Scholar
  28. 28.
    Guerin C, Huard V, Bravaix A (2007) The energy-driven hot-carrier degradation modes of nMOSFETs. IEEE Trans Device Mater Rel 7(2):225–235. CrossRefGoogle Scholar
  29. 29.
    Tsetseris L, Zhou XJ, Fleetwood DM, Schrimpf RD, Pantelides ST (2005) Physical mechanisms of negative-bias temperature instability. Appl Physics Lett.
  30. 30.
    Rosa GL, Guarin F, Rauch S, Acovic A, Lukaitis J, Crabbe E (1997) NBTI-channel hot carrier effects in PMOSFETs in advanced CMOS technologies. In: Proceedings of IEEE International Reliability Physics Symposium, pp 282–286.
  31. 31.
    Karimi N, Huang K (2016) Prognosis of NBTI aging using a machine learning scheme. In: IEEE International Symposium Defect and Fault Tolerance VLSI and Nanotechnology Systems (DFT), pp 7–10.
  32. 32.
    Karimi N, Danger JL, Guilley S (2018) Impact of aging on the reliability of delay pufs. J Electron Test (JETTA) 34(5):571–586. CrossRefGoogle Scholar
  33. 33.
    Zhou C, Jenkins KA, Chuang PI, Vezyrtzis C (2018) Effect of HCI degradation on the variability of MOSFETS. In: IEEE International Relations in Physics Symposium (IRPS), pp P–RT.1–1–P–RT.1–4.
  34. 34.
    Ziel AVD (1962) Thermal noise in field-effect transistors. Proc IRE 50(8):1808–1812. CrossRefGoogle Scholar
  35. 35.
    Hung KK, Ko PK, Hu C, Cheng YC (1990) A unified model for the flicker noise in metal-oxide-semiconductor field-effect transistors. IEEE Trans Electron Dev 37(3):654–665. CrossRefGoogle Scholar
  36. 36.
    Brglez F, Fujiwara H (1985) A neutral netlist of 10 combinational benchmark circuits and a targeted translator in FORTRAN. In: IEEE International Symposium Circuits and System (ISCAS)Google Scholar
  37. 37.
    NanGate, Inc (2018) NanGate FreePDK45 open cell library.
  38. 38.
    Synopsys, Inc (2018) MOS device aging analysis with HSPICE and CustomSim.
  39. 39.
    Karimi N, Chakrabarty K (2013) Detection, diagnosis, and recovery from clock-domain crossing failures in multiclock SoCs. IEEE Trans Comput-Aided Des Integr Circ Syst 32(9):1395– 1408CrossRefGoogle Scholar
  40. 40.
    Hwang EJ, Kim W, Kim YH (2009) Impact of process variation on timing characteristics of mtcmos flip-flops for low-power mobile multimedia applications. In: Proceedings of International Symposium Integrated Circuits, pp 332–335Google Scholar
  41. 41.
    Mahor V, Chouhan A, Pattanaik M (2012) A novel process variation tolerant wide fan-in dynamic or gate with reduced contention. In: International Conference on Computers and Devices for Communication (CODEC), pp 1–4.
  42. 42.
    Chang D, Ozev S, Sinanoglu O, Karri R (2014) Approximating the age of RF/analog circuits through re-characterization and statistical estimation. In: Design, Automatic and Test in Europe Conference on (DATE), pp 1–4.
  43. 43.
    Huang GB, Zhou H, Ding X, Zhang R (2012) Extreme learning machine for regression and multiclass classification. IEEE Trans Syst Man Cybern Syst 42(2):513–529. CrossRefGoogle Scholar
  44. 44.
    Hsu CW, Lin CJ (2002) A comparison of methods for multiclass support vector machines. IEEE Trans Neural Netw 13(2):415–425. CrossRefGoogle Scholar
  45. 45.
    Celio C, Chiu P, Asanović K, Nikolić B, Patterson D (2019) Broom: an open-source out-of-order processor with resilient low-voltage operation in 28-nm cmos. IEEE Micro 39(2):52–60. CrossRefGoogle Scholar
  46. 46.
    RISC-V Foundation (2019) RISC-V cores.
  47. 47.
    Cong J, Lim SK (2004) Edge separability-based circuit clustering with application to multilevel circuit partitioning. IEEE Trans Comput-Aided Des Integr Syst 23(3):346–357. CrossRefGoogle Scholar
  48. 48.
    Kadiyala Rao S, Robucci R, Patel C (2014) Simulation based framework for accurately estimating dynamic power-supply noise and path delay. J Electron Test 30(1):125–147. CrossRefGoogle Scholar
  49. 49.
    Singh A, Plusquellic J, Phatak D, Patel C (2006) Defect simulation methodology for iDDT testing. J Electron Test 22(3):255–272. CrossRefGoogle Scholar
  50. 50.
    Yun Y, Kim J, Kim N, Min B (2011) Beyond UVM for practical SoC verification. In: 2011 International SoC Design Conference, pp 158–162.

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Computer Science and Electrical EngineeringUniversity of Maryland Baltimore CountyBaltimoreUSA
  2. 2.Electrical and Computer Engineering DepartmentU.S. Naval AcademyAnnapolisUSA

Personalised recommendations