Advertisement

Plasma-digital nexus: plasma nanotechnology for the digital manufacturing age

  • J. Hong
  • A. B. Murphy
  • B. Ashford
  • P. J. Cullen
  • T. Belmonte
  • K. OstrikovEmail author
Review Paper
  • 77 Downloads

Abstract

Digital transformation in manufacturing is one of the key megatrends in the development of the global economy and society. Three-dimensional (3D) printing is a transformative digital technology poised to disrupt manufacturing and supply chains across major industries. Here we critically examine relevant insights into current and emerging applications of plasma nanotechnology in printing, including 3D printing. Plasma devices operated at atmospheric pressure coupled with printing processes may help strengthen 3D printing as an emerging fabrication technology that morphs diverse metal powders, polymers, plastics and other materials into digitally designed 3D shapes and patterns. We discuss how plasma applications may help overcome current limitations of 3D printing in various fields, e.g., limitations of sculpting composite materials, lack of mechanical strength and the need for post-processing. Our key focus is on the challenges, opportunities and physical mechanisms of the use of 3D printing in nano-manufacturing, defined as the fabrication of nanoscale building blocks, such as nanoparticles and nanomaterials; their assembly into higher-order (microscale) structures; and the integration of these structures into larger (macro-) scale devices and systems by controlling energy and matter at the nanoscale. Moreover, we discuss the physico-chemical mechanisms that result in highly-conformal deposition of nanostructured materials onto 3D surfaces with microscopic (and possibly nanoscale) control of textures and inter-layer crosslinking, without the need for additional heating. We further highlight the opportunities that arise for plasma nanotechnology to synergize with the emerging digital transformation platforms in surface micro- and nano-structuring using polymers, metals, metallic alloys, and other materials. These new findings in plasma-digital nanoscale fabrication may lead to a new digital manufacturing platform suitable for a number of cutting-edge applications in electronic, sensing and energy devices.

Keywords

Plasma printing Plasma nanotechnology Additive manufacturing Digital technologies 

Notes

Acknowledgements

We sincerely acknowledge the efforts of all researchers who have worked in any of the relevant areas and apologize if any relevant works were not included due to the specific focus and length limits of this article. This work was performed under the CSIRO-QUT Joint Laboratories Agreement. J. H. and B. A. gratefully acknowledge funding by the CSIRO Research Plus Postdoctoral Fellowship scheme. P. J. C. and K. O. thank the Australian Research Council for partial support.

Compliance with ethical standards

Conflicts of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

References

  1. L. Abhinandan, A. Hollander, Localized deposition of hydrocarbon using plasma activated chemical vapour deposition. Thin Solid Films 457, 241–245 (2004)ADSCrossRefGoogle Scholar
  2. T. Abuzairi, M. Okada, S. Bhattacharjee, M. Nagatsu, Surface conductivity dependent dynamic behaviour of an ultrafine atmospheric pressure plasma jet for microscale surface processing. Appl. Surf. Sci. 390, 489–496 (2016)ADSCrossRefGoogle Scholar
  3. G. Adams, J. Banks, C. Frazier, U. Toodi, M. Lagoudas, in 2018 NASA BIG Idea Challenge: Utilization of Solar Cell Umbrellas to Provide Long-Term Photovoltaic Power on Mars. Texas A&M University (2018)Google Scholar
  4. J. Alaman, R. Alicante, J.I. Pena, C. Sanchez-Somolinos, Inkjet printing of functional materials for optical and photonic applications. Materials 2016, 9 (2016)Google Scholar
  5. R.J. Anthony, K.Y. Cheng, Z.C. Holman, R.J. Holmes, U.R. Kortshagen, An all-gas-phase approach for the fabrication of silicon nanocrystal light-emitting devices. Nano Lett. 12, 2822–2825 (2012)ADSCrossRefGoogle Scholar
  6. I. Bahnini, M. Rivette, A. Rechia, A. Siadat, A. Elmesbahi, Additive manufacturing technology: the status, applications, and prospects. Int. J. Adv. Manuf. Tech. 97, 147–161 (2018)CrossRefGoogle Scholar
  7. C.R. Barry, N.Z. Lwin, W. Zheng, H.O. Jacobs, Printing nanoparticle building blocks from the gas phase using nanoxerography. Appl. Phys. Lett. 83, 5527–5529 (2003)ADSCrossRefGoogle Scholar
  8. C.R. Barry, J. Gu, H.O. Jacobs, Charging process and coulomb-force-directed printing of nanoparticles with sub-100-nm lateral resolution. Nano Lett. 5, 2078–2084 (2005)ADSCrossRefGoogle Scholar
  9. T. Belmonte, T. Gries, R.P. Cardoso, G. Arnoult, F. Kosior, G. Henrion, Chemical vapour deposition enhanced by atmospheric microwave plasmas: a large-scale industrial process or the next nanomanufacturing tool. Plasma Sourc. Sci. Technol. 2011, 20 (2011a)Google Scholar
  10. T. Belmonte, G. Henrion, T. Gries, Nonequilibrium atmospheric plasma deposition. J. Therm. Spray Technol. 20, 744–759 (2011b)ADSCrossRefGoogle Scholar
  11. J.P. Boeuf, Y. Lagmich, T. Unfer, T. Callegari, L.C. Pitchford, Electrohydrodynamic force in dielectric barrier discharge plasma actuators. J. Phys. D Appl. Phys. 40, 652–662 (2007)ADSCrossRefGoogle Scholar
  12. A. Boileau, T. Gries, C. Noel, R.P. Cardoso, T. Belmonte, Sub-micro a-C: H patterning of silicon surfaces assisted by atmospheric-pressure plasma-enhanced chemical vapor deposition. J. Phys. D Appl. Phys. 49, 6 (2016)CrossRefGoogle Scholar
  13. A. Botman, J.J.L. Mulders, C.W. Hagen, Creating pure nanostructures from electron-beam-induced deposition using purification techniques: a technology perspective. Nanotechnology 20, 6 (2009)CrossRefGoogle Scholar
  14. M.I. Boulos, The role of transport phenomena and modeling in the development of thermal plasma technology. Plasma Chem. Plasma 36, 3–28 (2016)CrossRefGoogle Scholar
  15. T. Bret, I. Utke, C. Gaillard, P. Hoffmann, Periodic structure formation by focused electron-beam-induced deposition. J. Vac. Sci. Technol. B 22, 2504–2510 (2004)CrossRefGoogle Scholar
  16. D. Chakravarty, C.S. Tiwary, C.F. Woellner, S. Radhakrishnan, S. Vinod, S. Ozden, P.A.D. Autreto, S. Bhowmick, S. Asif, S.A. Mani et al., 3D porous graphene by low-temperature plasma welding for bone implants. Adv. Mater. 28, 8959–8967 (2016)CrossRefGoogle Scholar
  17. K. Cheng, M.H. Yang, W.W.W. Chiu, C.Y. Huang, J. Chang, T.F. Ying, Y. Yang, Ink-jet printing, self-assembled polyelectrolytes, and electroless plating: low cost fabrication of circuits on a flexible substrate at room temperature. Macromol. Rapid Commun. 26, 247–264 (2005)ADSCrossRefGoogle Scholar
  18. J.W. Choi, E. MacDonald, R. Wicker, Multi-material microstereolithography. Int. J. Adv. Manuf. Tech. 49, 543–551 (2010)CrossRefGoogle Scholar
  19. L. Chong, S. Ramakrishna, S. Singh, A review of digital manufacturing-based hybrid additive manufacturing processes. Int. J. Adv. Manuf. Tech. 95, 2281–2300 (2018)CrossRefGoogle Scholar
  20. R. Clark, K. Tapily, K.H. Yu, T. Hakamata, S. Consiglio, D. O'Meara, C. Wajda, J. Smith, G. Leusink, Perspective: new process technologies required for future devices and scaling. Appl. Mater. 6, 5 (2018)Google Scholar
  21. A. Clausen, F. Wang, J.S. Jensen, O. Sigmund, J.A. Lewis, Topology optimized architectures with programmable Poisson’s ratio over large deformations. Adv Mater 27(37), 5523–5527 (2015)CrossRefGoogle Scholar
  22. V. Colombo, E. Ghedini, P. Sanibondi, Three-dimensional investigation of particle treatment in an RF thermal plasma with reaction chamber. Plasma Sourc. Sci. T 19, 6 (2010)Google Scholar
  23. P. Cools, C. Mota, I. Lorenzo-Moldero, R. Ghobeira, N. De Geyter, L. Moroni, R. Morent, Acrylic acid plasma coated 3D scaffolds for cartilage tissue engineering applications. Sci Rep. UK 8, 8 (2018)CrossRefGoogle Scholar
  24. E.A. Corbin, L.J. Millet, J.H. Pikul, C.L. Johnson, J.G. Georgiadis, W.P. King, R. Bashir, Micromechanical properties of hydrogels measured with MEMS resonant sensors. Biomed. Microdev. 15, 311–319 (2013)CrossRefGoogle Scholar
  25. C.R. Cunningham, J.M. Flynn, A. Shokrani, V. Dhokia, S.T. Newman, Invited review article: strategies and processes for high quality wire arc additive manufacturing. Addit. Manuf. 22, 672–686 (2018)CrossRefGoogle Scholar
  26. R. d'Agostino, P. Favia, C. Oehr, M.R. Wertheimer, Low-temperature plasma processing of materials: past, present, and future. Plasma Process Polym. 2, 7–15 (2005)ADSCrossRefGoogle Scholar
  27. B.J. de Gans, P.C. Duineveld, U.S. Schubert, Inkjet printing of polymers: State of the art and future developments. Adv. Mater. 16, 203–213 (2004)CrossRefGoogle Scholar
  28. T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson-Heid, A. De, W. Zhang, Additive manufacturing of metallic components—process, structure and properties. Prog. Mater. Sci. 92, 112–224 (2018)CrossRefGoogle Scholar
  29. A. Dey, S. Krishnamurthy, J. Bowen, D. Nordlund, M. Meyyappan, R.P. Gandhiraman, Plasma jet printing and in situ reduction of highly acidic graphene oxide. ACS Nano 12, 5473–5481 (2018)CrossRefGoogle Scholar
  30. M. Exner, A. Horn, P. Streek, F. Regenfuss, R. Ullmann, Ebert, laser micro sintering—a new method to generate metal and ceramic parts of high resolution with sub-micrometer powder. Proc. Monogr. Eng. Waste 2008, 491–499 (2008)Google Scholar
  31. R.D. Farahani, M. Dube, D. Therriault, Three-dimensional printing of multifunctional nanocomposites: manufacturing techniques and applications. Adv. Mater. 28, 5794–5821 (2016)CrossRefGoogle Scholar
  32. S. Felton, M. Tolley, E. Demaine, D. Rus, R. Wood, A method for building self-folding machines. Science 345, 644–646 (2014)ADSCrossRefGoogle Scholar
  33. S.R. Forrest, The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature 428, 911–918 (2004)ADSCrossRefGoogle Scholar
  34. H. Forster, C. Wolfrum, W. Peukert, Experimental study of metal nanoparticle synthesis by an arc evaporation/condensation process. J. Nanopart Res. 14, 5 (2012)CrossRefGoogle Scholar
  35. J.D. Fowlkes, R. Winkler, B.B. Lewis, M.G. Stanford, H. Plank, P.D. Rack, Simulation-guided 3D nanomanufacturing via focused electron beam induced deposition. ACS Nano 10, 6163–6172 (2016)CrossRefGoogle Scholar
  36. K. Fricke, H. Steffen, T. von Woedtke, K. Schroder, K.D. Weltmann, High rate etching of polymers by means of an atmospheric pressure plasma jet. Plasma Process Polym. 8, 51–58 (2011)CrossRefGoogle Scholar
  37. A. Frutiger, J.T. Muth, D.M. Vogt, Y. Mengüç, A. Campo, A.D. Valentine, C.J. Walsh, J.A. Lewis, Capacitive soft strain sensors via multicore-shell fiber printing. Adv Mater 27(15), 2440–2446 (2015)CrossRefGoogle Scholar
  38. P. Galliker, J. Schneider, H. Eghlidi, S. Kress, V. Sandoghdar, D. Poulikakos, Direct printing of nanostructures by electrostatic autofocussing of ink nanodroplets. Nat. Commun. 3, 5 (2012)CrossRefGoogle Scholar
  39. R.P. Gandhiraman, E. Singh, D.C. Diaz-Cartagena, D. Nordlund, J. Koehne, M. Meyyappan, Plasma jet printing for flexible substrates. Appl. Phys. Lett. 108, 8 (2016)CrossRefGoogle Scholar
  40. M. Gavagnin, H.D. Wanzenboeck, S. Wachter, M.M. Shawrav, A. Persson, K. Gunnarsson, P. Svedlindh, M. Stoger-Pollach, E. Bertagnolli, Free-standing magnetic nanopillars for 3D nanomagnet logic. ACS Appl. Mater. Inter. 6, 20254–20260 (2014)CrossRefGoogle Scholar
  41. H.C. George, T.A. Orlova, A.O. Orlov, G.L. Snider, Novel method for fabrication of nanoscale single-electron transistors: electron beam induced deposition of Pt and atomic layer deposition of tunnel barriers. J. Vac. Sci. Technol. B 29, 5 (2011)CrossRefGoogle Scholar
  42. M.K. Ghatkesar, H.H.P. Garza, F. Heuck, U. Staufer, Scanning probe microscope-based fluid dispensing. Micromach. Basel 5, 954–1001 (2014)CrossRefGoogle Scholar
  43. S.L. Girshick, Aerosol processing for nanomanufacturing. J. Nanopart Res. 10, 935–945 (2008)ADSCrossRefGoogle Scholar
  44. A.S. Gladman, E.A. Matsumoto, R.G. Nuzzo, L. Mahadevan, J.A. Lewis, Biomimetic 4D printing. Nat. Mater. 15, 413 (2016)ADSCrossRefGoogle Scholar
  45. N.Y.M. Gonzalez, M. El Morsli, P. Proulx, Production of nanoparticles in thermal plasmas: a model including evaporation nucleation, condensation, and fractal aggregation. J. Therm. Spray Technol. 17, 533–550 (2008)ADSCrossRefGoogle Scholar
  46. P. Grenson, O. Leon, P. Reulet, B. Aupoix, Investigation of an impinging heated jet for a small nozzle-to-plate distance and high Reynolds number: an extensive experimental approach. Int. J. Heat Mass Trans. 102, 801–815 (2016)CrossRefGoogle Scholar
  47. J.Y. Guo, X.B. Fan, R. Dolbec, S.W. Xue, J. Jurewicz, M. Boulos, Development of nanopowder synthesis using induction plasma. Plasma Sci. Technol. 12, 188–199 (2010)ADSCrossRefGoogle Scholar
  48. D.J. Guo, R. Kometani, S. Warisawa, S. Ishihara, Growth of ultra-long free-space-nanowire by the real-time feedback control of the scanning speed on focused-ion-beam chemical vapor deposition. J. Vac. Sci. Technol. B 31, 5 (2013)Google Scholar
  49. J. Hafiz, X. Wang, R. Mukherjee, W. Mook, C.R. Perrey, J. Deneen, J.V.R. Heberlein, P.H. McMurry, W.W. Gerberich, C.B. Carter et al., Hypersonic plasma particle deposition of Si–Ti–N nanostructured coatings. Surf. Coat. Tech. 188, 364–370 (2004)CrossRefGoogle Scholar
  50. J. Hafiz, R. Mukherjee, X. Wang, J.V.R. Heberlein, P.H. McMurry, S.L. Girshick, Analysis of nanostructured coatings synthesized by ballistic impaction of nanoparticles. Thin Solid Films 515, 1147–1151 (2006a)ADSCrossRefGoogle Scholar
  51. J. Hafiz, R. Mukherjee, X. Wang, P.H. McMurry, J.V.R. Heberlein, S.L. Girshick, Hypersonic plasma particle deposition—a hybrid between plasma spraying and vapor deposition. J. Therm. Spray Technol. 15, 822–826 (2006b)ADSCrossRefGoogle Scholar
  52. H. Hartl, Y.R. Guo, K. Ostrikov, Y.B. Xian, J. Zheng, X.G. Li, K.E. Fairfull-Smith, J. MacLeod, Film formation from plasma-enabled surface-catalyzed dehalogenative coupling of a small organic molecule. RSC Adv. 9, 2848–2856 (2019)CrossRefGoogle Scholar
  53. D. Herzog, V. Seyda, E. Wycisk, C. Emmelmann, Additive manufacturing of metals. Acta Mater. 117, 371–392 (2016)CrossRefGoogle Scholar
  54. L. Hirt, A. Reiser, R. Spolenak, T. Zambelli, Additive manufacturing of metal structures at the micrometer scale. Adv. Mater. 29, 5 (2017)CrossRefGoogle Scholar
  55. A. Hollander, L. Abhinandan, Localized deposition by mu-jet-CVD. Surf. Coat. Tech. 174, 1175–1177 (2003)CrossRefGoogle Scholar
  56. J. Hong, S. Yick, E. Chow, A. Murdock, J. Fang, D.H. Seo, A. Wolff, Z. Han, T. van der Laan, A. Bendavid et al., Direct plasma printing of nano-gold from an inorganic precursor. J. Mater. Chem. C 7, 8 (2019)Google Scholar
  57. J.L. Hu, H.P. Meng, G.Q. Li, S.I. Ibekwe, A review of stimuli-responsive polymers for smart textile applications. Smart Mater. Struct. 21, 5 (2012)Google Scholar
  58. K.I. Hunter, J.T. Held, K.A. Mkhoyan, U.R. Kortshagen, Nonthermal plasma synthesis of core/shell quantum dots: strained Ge/Si nanocrystals. ACS Appl. Mater. Inter. 9, 8263–8270 (2017)CrossRefGoogle Scholar
  59. E. Jager, J. Schmidt, A. Pfuch, S. Spange, O. Beier, N. Jager, O. Jantschner, R. Daniel, C. Mitterer, Antibacterial silicon oxide thin films doped with zinc and copper grown by atmospheric pressure plasma chemical vapor deposition. Nanomaterials 9, 5 (2019)CrossRefGoogle Scholar
  60. P.I. John, Plasma Sciences and the Creation of Wealth (Tata McGraw Hill Education, New York City, 2005)Google Scholar
  61. K.S. Joshy, S. Snigdha, S. Thomas, Plasma Modified Polymeric Materials for Scaffolding of Bone Tissue Engineering (Elsevier, Amsterdam, 2019)CrossRefGoogle Scholar
  62. K.S. Kim, T.H. Kim, Nanofabrication by thermal plasma jets: From nanoparticles to low-dimensional nanomaterials. J. Appl. Phys. 125, 5 (2019)Google Scholar
  63. D.B. Kolesky, R.L. Truby, A. Sydney Gladman, T.A. Busbee, K.A. Homan, J.A. Lewis, 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs. Adv Mater 26(19), 3124–3130 (2014)CrossRefGoogle Scholar
  64. H.W.P. Koops, O.E. Hoinkis, M.E.W. Honsberg, R. Schmidt, R. Blum, G. Bottger, A. Kuligk, C. Liguda, M. Eich, Two-dimensional photonic crystals produced by additive nanolithography with electron beam-induced deposition act as filters in the infrared. Microelectron Eng. 57–8, 995–1001 (2001)CrossRefGoogle Scholar
  65. U. Kortshagen, U. Bhandarkar, Modeling of particulate coagulation in low pressure plasmas. Phys. Rev. E 60, 887–898 (1999)ADSCrossRefGoogle Scholar
  66. U.R. Kortshagen, R.M. Sankaran, R.N. Pereira, S.L. Girshick, J.J. Wu, E.S. Aydil, Nonthermal plasma synthesis of nanocrystals: fundamental principles. Mater. Appl. Chem. Rev. 116, 11061–11127 (2016)Google Scholar
  67. F. Kotz, K. Arnold, W. Bauer, D. Schild, N. Keller, K. Sachsenheimer, T.M. Nargang, C. Richter, D. Helmer, B.E. Rapp, Three-dimensional printing of transparent fused silica glass. Nature 544, 337 (2017)ADSCrossRefGoogle Scholar
  68. N.J. Kramer, R.J. Anthony, M. Mamunuru, E.S. Aydil, U.R. Kortshagen, Plasma-induced crystallization of silicon nanoparticles. J. Phys. D Appl. Phys. 47, 5 (2014)ADSCrossRefGoogle Scholar
  69. N.J. Kramer, E.S. Aydil, U.R. Kortshagen, Requirements for plasma synthesis of nanocrystals at atmospheric pressures. J. Phys. D Appl. Phys. 48, 7 (2015)CrossRefGoogle Scholar
  70. A. Kumar, S. Kang, C. Larriba-Andaluz, H. Ouyang, C.J. Hogan, R.M. Sankaran, Ligand-free Ni nanocluster formation at atmospheric pressure via rapid quenching in a microplasma process. Nanotechnology 25, 5 (2014)Google Scholar
  71. S. Kyung, Y. Lee, C. Kim, J. Lee, G. Yeom, Deposition of carbon nanotubes by capillary-type atmospheric pressure PECVD. Thin Solid Films 506, 268–273 (2006)ADSCrossRefGoogle Scholar
  72. A. Lazea-Stoyanova, A. Vlad, A.M. Vlaicu, V.S. Teodorescu, G. Dinescu, Synthesis of copper particles by non-thermal atmospheric pressure plasma jet. Plasma Process Polym. 12, 705–709 (2015)CrossRefGoogle Scholar
  73. H.H. Lee, K.S. Chou, K.C. Huang, Inkjet printing of nanosized silver colloids. Nanotechnology 16, 2436–2441 (2005)ADSCrossRefGoogle Scholar
  74. S.W. Lee, D. Liang, X.P.A. Gao, R.M. Sankaran, Direct writing of metal nanoparticles by localized plasma electrochemical reduction of metal cations in polymer films. Adv. Funct. Mater. 21, 2155–2161 (2011)CrossRefGoogle Scholar
  75. B.B. Lewis, M.G. Stanford, J.D. Fowlkes, K. Lester, H. Plank, P.D. Rack, Electron-stimulated purification of platinum nanostructures grown via focused electron beam induced deposition. Beilstein J Nanotech. 6, 907–918 (2015)CrossRefGoogle Scholar
  76. M.M. Ling, Z.N. Bao, Thin film deposition, patterning, and printing in organic thin film transistors. Chem Mater. 16, 4824–4840 (2004)CrossRefGoogle Scholar
  77. Y. Liu, J.K. Boyles, J. Genzer, M.D. Dickey, Self-folding of polymer sheets using local light absorption. Soft Matter 8, 1764–1769 (2012)ADSCrossRefGoogle Scholar
  78. M.F. Mabrook, C. Pearson, A.S. Jombert, D.A. Zeze, M.C. Petty, The morphology, electrical conductivity and vapour sensing ability of inkjet-printed thin films of single-wall carbon nanotubes. Carbon 47, 752–757 (2009)CrossRefGoogle Scholar
  79. K. Mackie, M. Gordon, Microplasma-based deposition of functional nanomaterials for energy storage applications. Abstr. Pap. Am. Chem. S 253, 8 (2017)Google Scholar
  80. K.E. Mackie, A.C. Pebley, M.M. Butala, J.P. Zhang, G.D. Stucky, M.J. Gordon, Microplasmas for direct, substrate-independent deposition of nanostructured metal oxides. Appl. Phys. Lett. 109, 8 (2016)CrossRefGoogle Scholar
  81. S. Magdassi, A. Bassa, Y. Vinetsky, A. Kamyshny, Silver nanoparticles as pigments for water-based ink-jet inks. Chem. Mater. 15, 2208–2217 (2003)CrossRefGoogle Scholar
  82. P. Maguire, D. Rutherford, M. Macias-Montero, C. Mahony, C. Kelsey, M. Tweedie, F. Perez-Martin, H. McQuaid, D. Diver, D. Mariottit, Continuous in-flight synthesis for on-demand delivery of ligand-free colloidal gold nanoparticles. Nano Lett. 17, 1336–1343 (2017)ADSCrossRefGoogle Scholar
  83. R.M. Mahamood, Laser Metal Deposition Process of Metals, Alloys, and Composite Materials (Springer, Berlin, 2018)CrossRefGoogle Scholar
  84. A. Mameli, Y.H. Kuang, M. Aghaee, C.K. Ande, B. Karasulu, M. Creatore, A.J.M. Mackus, W.M.M. Kessels, F. Roozeboornt, Area-selective atomic layer deposition of In2O3: H Using a mu-plasma printer for local area activation. Chem. Mater. 29, 921–925 (2017)CrossRefGoogle Scholar
  85. L. Mangolini, U. Kortshagen, Plasma-assisted synthesis of silicon nanocrystal inks. Adv. Mater. 19, 2513 (2007)CrossRefGoogle Scholar
  86. L. Mangolini, E. Thimsen, U. Kortshagen, High-yield plasma synthesis of luminescent silicon nanocrystals. Nano Lett. 5, 655–659 (2005)ADSCrossRefGoogle Scholar
  87. Y.Q. Mao, K. Yu, M.S. Isakov, J.T. Wu, M.L. Dunn, H.J. Qi, Sequential self-folding structures by 3D printed digital shape memory polymers. Sci. Rep. UK 5, 8 (2015)Google Scholar
  88. T. Matsoukas, M. Russell, Particle charging in low-pressure plasmas. J. Appl. Phys. 77, 4285–4292 (1995)ADSCrossRefGoogle Scholar
  89. R. Maurau, N.D. Boscher, S. Olivier, S. Bulou, T. Belmonte, J. Dutroncy, T. Sindzingre, P. Choquet, Atmospheric pressure, low temperature deposition of photocatalytic TiOx thin films with a blown arc discharge. Surf. Coat. Tech. 232, 159–165 (2013)CrossRefGoogle Scholar
  90. D. Merche, N. Vandencasteele, F. Reniers, Atmospheric plasmas for thin film deposition: a critical review. Thin Solid Films 520, 4219–4236 (2012)ADSCrossRefGoogle Scholar
  91. I. Michelakaki, N. Boukos, D.A. Dragatogiannis, S. Stathopoulos, C.A. Charitidis, D. Tsoukalas, Synthesis of hafnium nanoparticles and hafnium nanoparticle films by gas condensation and energetic deposition. Beilstein J. Nanotech. 9, 1868–1880 (2018)CrossRefGoogle Scholar
  92. S.Y. Min, T.S. Kim, B.J. Kim, H. Cho, Y.Y. Noh, H. Yang, J.H. Cho, T.W. Lee, Large-scale organic nanowire lithography and electronics. Nat. Commun. 4, 8 (2013)Google Scholar
  93. S. Mohr, O. Khan, 3D printing and its disruptive impacts on supply chains of the future. Technol. Innov. Manag. 5, 20–25 (2015)CrossRefGoogle Scholar
  94. I. Motrescu, M. Nagatsu, Nanocapillary atmospheric pressure plasma jet: a tool for ultrafine maskless surface modification at atmospheric pressure. ACS Appl. Mater. Inter. 8, 12528–12533 (2016)CrossRefGoogle Scholar
  95. K. Murakami, M. Takai, Nano electron source fabricated by beam-induced deposition and its unique feature. Microelectron Eng. 132, 74–82 (2015)CrossRefGoogle Scholar
  96. L.E. Murr, S.M. Gaytan, D.A. Ramirez, E. Martinez, J. Hernandez, K.N. Amato, P.W. Shindo, F.R. Medina, R.B. Wicker, Metal fabrication by additive manufacturing using laser and electron beam melting technologies. J. Mater. Sci. Technol. 28, 1–14 (2012)CrossRefGoogle Scholar
  97. T.J. Ober, D. Foresti, J.A. Lewis, Active mixing of complex fluids at the microscale. Proc Natl Acad Sci 112(40), 12293–12298 (2015)ADSCrossRefGoogle Scholar
  98. S. Ohno, M. Uda, Preparation for ultrafine particles of Fe–Ni Fe–Cu and Fe–Si alloys by hydrogen plasma-metal reaction. J. Jpn. I Method 53, 946–952 (1989)Google Scholar
  99. R. Parashkov, E. Becker, T. Riedl, H.H. Johannes, W. Kowalsky, Large area electronics using printing, methods. Proc. IEEE 93, 1321–1329 (2005)CrossRefGoogle Scholar
  100. J.-U. Park, M. Hardy, S. J. Kang, K. Barton, K. Adair, D.K. Mukhopadhyay, C. Y. Lee, M.S. Strano, A.G. Alleyne, J.G. Georgiadis et al., High-resolution electrohydrodynamic jet printing. Nat. Mater. 6, 782 (2007)ADSCrossRefGoogle Scholar
  101. S. Park, U. Cvelbar, W. Choe, S.Y. Moon, The creation of electric wind due to the electrohydrodynamic force. Nat. Commun. 9, 7 (2018)CrossRefGoogle Scholar
  102. J. Perelaer, R. Jani, M. Grouchko, A. Kamyshny, S. Magdassi, U.S. Schubert, Plasma and microwave flash sintering of a tailored silver nanoparticle ink, yielding 60% Bulk conductivity on cost-effective polymer foils. Adv. Mater. 24, 3993–3998 (2012)CrossRefGoogle Scholar
  103. H. Plank, C. Gspan, M. Dienstleder, G. Kothleitner, F. Hofer, The influence of beam defocus on volume growth rates for electron beam induced platinum deposition. Nanotechnology 19, 8 (2008)Google Scholar
  104. P.D. Rack, J.D. Fowlkes, S.J. Randolph, In situ probing of the growth and morphology in electron-beam-induced deposited nanostructures. Nanotechnology 18, 8 (2007)CrossRefGoogle Scholar
  105. C.L. Randall, E. Gultepe, D.H. Gracias, Self-folding devices and materials for biomedical applications. Trends Biotechnol. 30, 138–146 (2012)CrossRefGoogle Scholar
  106. C. Richmonds, R.M. Sankaran, Plasma-liquid electrochemistry: rapid synthesis of colloidal metal nanoparticles by microplasma reduction of aqueous cations. Appl. Phys. Lett. 93, 8 (2008)CrossRefGoogle Scholar
  107. C. Richmonds, M. Witzke, B. Bartling, S.W. Lee, J. Wainright, C.C. Liu, R.M. Sankaran, Electron-transfer reactions at the plasma-liquid interface. J. Am. Chem. Soc. 133, 17582–17585 (2011)CrossRefGoogle Scholar
  108. P. Richner, S.J.P. Kress, D.J. Norris, D. Poulikakos, Charge effects and nanoparticle pattern formation in electrohydrodynamic nanodrip printing of colloids. Nanoscale 8, 6028–6034 (2016)ADSCrossRefGoogle Scholar
  109. S. Sanaur, A. Whalley, B. Alameddine, M. Carnes, C. Nuckolls, Jet-printed electrodes and semiconducting oligomers for elaboration of organic thin-film transistors. Org. Electron. 7, 423–427 (2006)CrossRefGoogle Scholar
  110. V. Satulu, M.D. Ionita, S. Vizireanu, B. Mitu, G. Dinescu, Plasma processing with fluorine chemistry for modification of surfaces wettability. Molecules 21, 8 (2016)CrossRefGoogle Scholar
  111. J. Schneider, P. Rohner, D. Thureja, M. Schmid, P. Galliker, D. Poulikakos, Electrohydrodynamic nanodrip printing of high aspect ratio metal grid transparent electrodes. Adv. Funct. Mater. 26, 833–840 (2016)CrossRefGoogle Scholar
  112. M. Schwentenwein, J. Homa, Additive manufacturing of dense alumina ceramics. Int. J. Appl. Ceram. Tech. 12, 1–7 (2015)CrossRefGoogle Scholar
  113. C.W. Sele, T. von Werne, R.H. Friend, H. Sirringhaus, Lithography-free, self-aligned inkjet printing with sub-hundred-nanometer resolution. Adv Mater. 17, 997 (2005)CrossRefGoogle Scholar
  114. J.H. Seo, B.G. Hong, Thermal plasma synthesis of nano-sized powders. Nucl. Eng. Technol. 44, 9–20 (2012)CrossRefGoogle Scholar
  115. S.K. Seol, D. Kim, S. Lee, J.H. Kim, W.S. Chang, J.T. Kim, Electrodeposition-based 3D printing of metallic microarchitectures with controlled internal structures. Small 11, 3896–3902 (2015)CrossRefGoogle Scholar
  116. M. Shigeta, A.B. Murphy, Thermal plasmas for nanofabrication. J. Phys. D Appl. Phys. 44, 8 (2011)CrossRefGoogle Scholar
  117. Y. Shimizu, Diameter control of gold nanoparticles synthesized in gas phase using atmospheric-pressure H-2/Ar plasma jet and gold wire as the nanoparticle source: control by varying the H-2/Ar mixture ratio. AIP Adv. 7, 8 (2017)CrossRefGoogle Scholar
  118. Y. Shimizu, T. Sasaki, T. Ito, K. Terashima, N. Koshizaki, Fabrication of spherical carbon via UHF inductively coupled microplasma CVD. J. Phys. D Appl. Phys. 36, 2940–2944 (2003)ADSCrossRefGoogle Scholar
  119. Y. Shimizu, K. Kawaguchi, T. Sasaki, N. Koshizaki, Generation of room-temperature atmospheric H-2/Ar microplasma jet driven with pulse-modulated ultrahigh frequency and its application to gold nanoparticle preparation. Appl. Phys. Lett. 94, 8 (2009)Google Scholar
  120. K. Silmy, A. Hollander, A. Dillmann, J. Thomel, Micro-jet plasma CVD with HMDSO/O-2. Surf. Coat. Tech. 200, 368–371 (2005)CrossRefGoogle Scholar
  121. H. Sirringhaus, T. Kawase, R.H. Friend, T. Shimoda, M. Inbasekaran, W. Wu, E.P. Woo, High-resolution inkjet printing of all-polymer transistor circuits. Science 290, 2123–2126 (2000)ADSCrossRefGoogle Scholar
  122. M.A. Skylar-Scott, S. Gunasekaran, J.A. Lewis, Laser-assisted direct ink writing of planar and 3D metal architectures. Proc. Natl. Acad. Sci. USA 113, 6137–6142 (2016)ADSCrossRefGoogle Scholar
  123. M.G. Stanford, B.B. Lewis, J.H. Noh, J.D. Fowlkes, P.D. Rack, Inert gas enhanced laser-assisted purification of platinum electron-beam-induced deposits. ACS Appl. Mater. Inter. 7, 19579–19588 (2015)CrossRefGoogle Scholar
  124. A.R. Studart, Additive manufacturing of biologically-inspired materials. Chem. Soc. Rev. 45, 359–376 (2016)CrossRefGoogle Scholar
  125. N. Stutzmann, R.H. Friend, H. Sirringhaus, Self-aligned, vertical-channel, polymer field-effect transistors. Science 299, 1881–1884 (2003)ADSCrossRefGoogle Scholar
  126. Y. Sui, Y. Dai, C.C. Liu, R.M. Sankaran, C.A. ZormanSui, A new class of low-temperature plasma-activated, inorganic salt-based particle-free inks for inkjet printing metals. Adv. Mater. Technol. 2019, 1900119 (2019)CrossRefGoogle Scholar
  127. J.B. Szczech, C.M. Megaridis, D.R. Gamota, J. Zhang, Fine-line conductor manufacturing using drop-on-demand PZT printing technology. IEEE Tech. Electron Pack. 25, 26–33 (2002)CrossRefGoogle Scholar
  128. T. Takai, H. Nakao, F. Iwata, Three-dimensional microfabrication using local electrophoresis deposition and a laser trapping technique. Opt. Express 22, 28109–28117 (2014)ADSCrossRefGoogle Scholar
  129. V. Tasco, M. Esposito, F. Todisco, A. Benedetti, M. Cuscuna, D. Sanvitto, A. Passaseo, Three-dimensional nanohelices for chiral photonics. Appl. Phys. A Mater. 122, 8 (2016)CrossRefGoogle Scholar
  130. M. Thomas, J. Borris, A. Dohse, M. Eichler, A. Hinze, K. Lachmann, K. Nagel, and C. P. Klages, Plasma printing and related techniques—patterning of surfaces using microplasmas at atmospheric pressure. Plasma Process Polym. 9, 1086–1103 (2012)CrossRefGoogle Scholar
  131. M. Thomson, J.L. Hodgkinson, D.W. Sheel, Control of zinc oxide surface structure using combined atmospheric pressure-based CVD growth and plasma etching. Surf. Coat. Tech. 230, 190–195 (2013)CrossRefGoogle Scholar
  132. S. Tibbits, 4d printing: multi-material shape change. Archit. Design 84, 116–121 (2014)CrossRefGoogle Scholar
  133. R.L. Truby, J.A. Lewis, Printing soft matter in three dimensions. Nature 540, 371–378 (2016)ADSCrossRefGoogle Scholar
  134. F. Ullmann, J. Bielecki, Synthesis in the biphenyl series (I Announcement). Ber. Dtsch Chem. Ges. 34, 2174–2185 (1901)Google Scholar
  135. M. Vaezi, H. Seitz, S.F. Yang, A review on 3D micro-additive manufacturing technologies. Int. J. Adv. Manuf. Tech. 67, 1721–1754 (2013)CrossRefGoogle Scholar
  136. R. van Hout, V. Rinsky, Y.G. Grobman, Experimental study of a round jet impinging on a flat surface: flow field and vortex characteristics in the wall jet. Int. J. Heat Fluid. 70, 41–58 (2018)CrossRefGoogle Scholar
  137. P. Verhoeven, A. Stevens, J. P. Schalken, M. Soltani, A. Mäntysalo, Digital printing with micro plasmas and its effects on surface wettability. 28th international conference on surface modification technologies, 2014 Tampre. Conference proceedings (2014), pp. 421–431Google Scholar
  138. R.O.F. Verkuijlen, M.H.A. van Dongen, A.A.E. Stevens, J. van Geldrop, J.P.C. Bernards, Surface modification of polycarbonate and polyethylene naphtalate foils by UV-ozone treatment and mu Plasma printing. Appl. Surf. Sci. 290, 381–387 (2014)ADSCrossRefGoogle Scholar
  139. A. Vyatskikh, S. Delalande, A. Kudo, X. Zhang, C.M. Portela, J.R. Greer, Additive manufacturing of 3D nano-architected metals. Nat Commun. 2018, 9 (2018)Google Scholar
  140. X.L. Wang, A. Gidwani, S.L. Girshick, P.H. McMurry, Aerodynamic focusing of nanoparticles: II Numerical simulation of particle motion through aerodynamic lenses. Aerosol. Sci. Tech. 39, 624–636 (2005a)ADSCrossRefGoogle Scholar
  141. X.L. Wang, F.E. Kruis, P.H. McMurry, Aerodynamic focusing of nanoparticles: I guidelines for designing aerodynamic lenses for nanoparticles. Aerosol. Sci. Tech. 39, 611–623 (2005b)ADSCrossRefGoogle Scholar
  142. J.Z. Wang, J. Gu, F. Zenhausem, H. Sirringhaus, Low-cost fabrication of submicron all polymer field effect transistors. Appl. Phys. Lett. 88, 6 (2006)Google Scholar
  143. D.Z. Wang, W. Zha, L. Feng, Q. Ma, X.M. Liu, N. Yang, Z. Xu, X.J. Zhao, J.S. Liang, T.Q. Ren et al., Electrohydrodynamic jet printing and a preliminary electrochemistry test of graphene micro-scale electrodes. J. Micromech. Microeng. 26, 6 (2016a)Google Scholar
  144. M. Wang, P. Favi, X.Q. Cheng, N.H. Golshan, K.S. Ziemer, M. Keidar, T.J. Webster, Cold atmospheric plasma (CAP) surface nanomodified 3D printed polylactic acid (PLA) scaffolds for bone regeneration. Acta Biomater. 46, 256–265 (2016b)CrossRefGoogle Scholar
  145. T. Wei, J. Ruan, Z.J. Fan, G.H. Luo, F. Wei, Preparation of a carbon nanotube film by ink-jet printing. Carbon 45, 2712–2716 (2007)CrossRefGoogle Scholar
  146. K.D. Weltmann, J.F. Kolb, M. Holub, D. Uhrlandt, M. Simek, K. Ostrikov, S. Hamaguchi, U. Cvelbar, M. Cernak, B. Locke et al., The future for plasma science and technology. Plasma Process Polym. 2019, 16 (2019)Google Scholar
  147. J. Wienand, A. Riedelsheimer, B. Weigand, Numerical study of a turbulent impinging jet for different jet-to-plate distances using two-equation turbulence models. Eur. J. Mech. B Fluid 61, 210–217 (2017)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  148. J. Xu, C. Zhong, C. Fu, Novel method for printing high-quality metal wires. SPIE Newsroom (2007)Google Scholar
  149. Y.G. Yao, Z.N. Huang, P.F. Xie, S.D. Lacey, R.J. Jacob, H. Xie, F.J. Chen, A.M. Nie, T.C. Pu, M. Rehwoldt et al., Carbothermal shock synthesis of high-entropy-alloy nanoparticles. Science 359, 1489–1494 (2018)ADSCrossRefGoogle Scholar
  150. S. Yick, Z.J. Han, K. Ostrikov, Atmospheric microplasma-functionalized 3D microfluidic strips within dense carbon nanotube arrays confine Au nanodots for SERS sensing. Chem. Commun. 49, 2861–2863 (2013)CrossRefGoogle Scholar
  151. Z. Yin, Y. Huang, Y. Duan, H. Zhang, Electrohydrodynamic Direct-writing for Flexible Electronic Manufacturing (Springer, Berlin, 2018)CrossRefGoogle Scholar
  152. R.M. Young, E. Pfender, generation and behavior of fine particles in thermal plasmas—a review. Plasma Chem. Plasma P 5, 1–37 (1985)Google Scholar
  153. I. Zein, D.W. Hutmacher, K.C. Tan, S.H. Teoh, Fused deposition modeling of novel scaffold architectures for tissue engineering applications. Biomaterials 23, 1169–1185 (2002)CrossRefGoogle Scholar
  154. R. Zimmermann, A. Pfuch, K. Horn, J. Weisser, A. Heft, M. Roder, R. Linke, M. Schnabelrauch, A. Schimanski, An approach to create silver containing antibacterial coatings by use of atmospheric pressure plasma chemical vapour deposition (APCVD) and combustion chemical vapour deposition (CCVD) in an economic way. Plasma Process Polym. 8, 295–304 (2011)CrossRefGoogle Scholar

Copyright information

© Division of Plasma Physics, Association of Asia Pacific Physical Societies 2020

Authors and Affiliations

  • J. Hong
    • 1
  • A. B. Murphy
    • 1
  • B. Ashford
    • 1
  • P. J. Cullen
    • 2
  • T. Belmonte
    • 3
  • K. Ostrikov
    • 4
    Email author
  1. 1.CSIRO ManufacturingLindfieldAustralia
  2. 2.School of Chemical and Biomolecular EngineeringThe University of SydneySydneyAustralia
  3. 3.Université de Lorraine, Institut Jean Lamour, UMR CNRS 7198NancyFrance
  4. 4.School of Chemistry, Physics and Mechanical EngineeringQueensland University of TechnologyBrisbaneAustralia

Personalised recommendations