Advertisement

Theoretical models for unstable IAWs and nonlinear structures in the upper ionosphere

  • 23 Accesses

Abstract

Physical mechanisms are discussed for the excitation of ion-acoustic waves (IAWs) by field-aligned shear flow of ions and parallel current produced by electrons in the upper ionospheric oxygen hydrogen plasma within auroral latitudes. Theoretical models are presented for the formation of solitary structures by nonlinear IAWs. It is pointed out that the small concentration of hydrogen ions in the oxygen plasma should not be ignored, because it plays important role in the linear instability of IAWs and in determining the size of the nonlinear electrostatic structures. The growth rates of IAWs and size of nonlinear structures vary with altitude, because both depend upon the density ratio of oxygen-to-hydrogen ions along with other parameters. Current-driven electrostatic ion-acoustic waves are studied using kinetic theory which shows that parallel current produces these waves if the concentration of protons is very small about 4% or lesser in the presence of field-aligned shear flow of both kind of ions. Fluid theory is used to look for shear flow-driven instabilities and formation of nonlinear structures ignoring ion temperature effects in this plasma where Freja observations indicate \(T_{i}\approx \) (0.3–0.1)\(T_{e}\). Effects of nonthermal electrons and density gradient on the instabilities and size of the structures are also pointed out.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 85

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. W.E. Amatucci, Inhomogeneous plasma flows: A review of in situ observations and laboratory experiments. J. Geophys. Res. 104, 14481 (1999)

  2. T.K. Baluku, M.A. Hellberg, Kinetic theory of dust ion acoustic waves in a kappa-distributed plasma Phys. Plasmas. 22, 083701 (2015)

  3. S. Basu, S. Basu, E. MacKenzie, P.F. Fougere, W.R. Coley, N.C. Maynard, J.D. Winningham, M. Sugiura, W.B. Hanson, W.R. Hoegy, Simultaneous density and electric field fluctuation spectra associated with velocity shears in the auroral oval. J. Geophys. Res. 39, 115 (1988)

  4. J. Bonnell, P. Kintner, J.E. Wahlund, K. Lynch, R. Arnoldy, Interferometric determination of broadband ELF wave phase velocity within a region of transverse auroral ion acceleration. Geophys. Res. Lett. 23, 3297 (1996)

  5. S.J. Buchsbaum, Resonance in a plasma with two ion species. Phys. Fluids 3, 418 (1960)

  6. R.A. Cairns, A.A. Mamum, R. Bingham, R. Boström, R.O. Dendy, C.M.C. Nairn, P.K. Shukla, Electrostatic solitary structures in non-thermal plasmas. Geophys. Res. Lett. 22, 2709 (1995)

  7. C. Cattell, The relationship of field-aligned currents to electrostatic ion cyclotron waves. J. Geophys. Res. 86, 3641 (1981)

  8. C.A. Cattell, F.S. Mozer, I. Roth, R.R. Anderson, R.C. Elphic, W. Lennartsson, E. Ungstrup, ISEE 1 observations of electrostatic ion cyclotron waves in association with ion beams on auroral field lines from \(\sim 2.5\) to \(4.5\) \(R_{E}\). J. Geophys. Res. 96, 11421 (1991)

  9. C. Cattell, R. Bergmann, K. Sigsbee, C. Carlson, C. Chaston, R. Ergun, J. McFadden, F.S. Mozer, M. Temerin, R. Strangeway, R. Elphic, L. Kistler, E. Moebius, L. Tang, D. Klumpar, R. Pfaff, The association of electrostatic ion cyclotron waves, ion and electron beams and field-aligned currents: FAST observations of an auroral zone crossing near midnight. Geophys. Res. Lett. 25, 2053 (1998)

  10. F.F. Chen, Introduction to plasma physics and controlled fusion, 2nd edn. (Plenum, New York, 1984)

  11. V.W. Chow, M. Rosenberg, Electrostatic ion cyclotron instabilities in negative ion plasmas. Phys. Plasmas 1, 2316 (1996)

  12. D.R. Dakin, T. Tajima, G. Benford, N. Rynn, Ion heating by the electrostatic ion cyclotron instability: theory and experiment. J. Plasma Phys. 15, 175 (1976)

  13. N. D’Angelo, Kelvin-Helmholtz instability in a fully ionized plasma in a magnetic field. Phys. Fluids 8, 1748 (1965)

  14. N. D’Angelo, R. Motley, Electrostatic oscillations near the ion cyclotron frequency. Phys. Fluids 5, 633 (1962)

  15. P.O. Dovner, A.I. Eriksson, R. Bostrom, B. Holback, Freja multiprobe observations of electrostatic solitary structures. Geophys. Res. Lett. 21, 1827 (1994)

  16. W.E. Drummond, M.N. Rosenbluth, Anomalous diffusion arising from microinstabilities in a plasma. Phys. Fluids 5, 1507 (1962)

  17. G.D. Earle, M.C. Kelley, G. Ganguli, Large velocity shears and associated electrostatic waves and turbulence in the auroral \(F\) region. J. Geophys. Res. 94, 321 (1989)

  18. A.I. Eriksson, B. Holback, P.O. Dovner, R. Boström, G. Holmgren, M. André, L. Eliasson, P.M. Kintner, Geophys. Res. Lett. 21, 1843 (1994)

  19. A.I. Eriksson, A. Mälkki, P.O. Dovner, R. Boström, G. Holmgren, B. Holback, A statistical survey of auroral solitary waves and weak double layers: 2. Measurement accuracy and ambient plasma density. J. Geophys. Res. 102, 11385 (1997)

  20. G. Ganguli, Y.C. Lee, P.J. Palmadesso, Electrostatic ion-cyclotron instability caused by a nonuniform electric field perpendicular to the external magnetic field. Phys. Fluids 28, 761 (1985)

  21. G. Ganguli, Y.C. Lee, P.J. Palmadesso, Kinetic theory for electrostatic waves due to transverse velocity shears. Phys. Fluids 31, 823 (1988)

  22. G. Ganguli, M.J. Keskinen, H. Romero, R. Heelis, T. Moore, C. Pollock, Coupling of microprocesses and macroprocesses due to velocity shear: an application to the low-altitude ionosphere. J. Geophys. Res. 99, 8873 (1994)

  23. V.V. Gavrishchaka, M.E. Koepke, G. Ganguli, Dispersive properties of a magnetized plasma with a field-aligned drift and inhomogeneous transverse flow. Phys. Plasmas 3, 3091 (1996)

  24. V.V. Gavrishchaka, M.E. Koepke, G.I. Ganguli, Ion cyclotron modes in a two-ion-component plasma with transverse-velocity shear. J. Geophys. Res. 102, 11653 (1997)

  25. V.V. Gavrishchaka, S.B. Ganguli, G.I. Ganguli, Origin of low-frequency oscillations in the ionosphere. Phys. Rev. Lett. 80, 728 (1998)

  26. V.V. Gavrishchaka, S.B. Ganguli, G.I. Ganguli, Electrostatic oscillations due to filamentary structures in the magnetic-field-aligned flow: the ion-acoustic branch. J. Geophys. Res. 104, 12683 (1999)

  27. D.A. Gurnett, Review of current research, Geophys. Monogr. Ser., vol. 35, edited by B.T. Tsurutani and R.G. Stone, p. 207, SGU, Washington, D.C., (1985)

  28. D.A. Gurnett, F.M. Neubauer, R. Schwenn, Plasma wave turbulence associated with an interplanetary shock. J. Geophys. Res. 84, 541 (1979)

  29. A. Hasegawa, Plasma instabilities and non-linear effects (Springer, Berlin, 1975)

  30. R.A. Hess, R.G. MacDowall, B. Goldstein, M. Neugebauer, R.J. Forsyth, Ion acoustic-like waves observed by Ulysses near interplanetary shock waves in the three-dimensional heliosphere. J. Geophys. Res. 103, 6531 (1998)

  31. J.H. Hoffman, W.H. Dodson, Light ion concentrations and fluxes in the polar regions during magnetically quiet times. J. Geophys. Res. 85, 626–632 (1980)

  32. J.L. Horowitz, C.J. Pollock, T.E. Moore, W.K. Peterson, J.L. Burch, J.D. Winningham, J.D. Craven, L.A. Frank, A. Persoon, The polar cap environment of outflowing \(O^{+}\). J. Geophys. Res. 97, 8361 (1992)

  33. J.R. Johnson, T. Cheng, Nonlinear vortex structures with diverging electric fields and their relation to the black aurora. Geophys. Res. Lett. 22, 1481 (1995)

  34. A. Kakad, B. Kakad, C.R. Anekallu, G. Lakhina, Y. Omura, A. Fazakerley, Slow electrostatic solitary waves in Earth’s plasma sheet boundary layer. J. Geophys. Res. Sp. Phys. 121, 4452 (2016)

  35. M.C. Kelley, The earth ionosphere: plasma physics and electrodynamics, 2nd edn. (Academic Press, Elsevier, Oxford, 2009)

  36. M.C. Kelley, C.W. Carlson, Observations of intense velocity shear and associated electrostatic waves near an auroral arc. J. Geophys. Res. 82, 2343 (1977)

  37. C.F. Kennel, F.L. Scarf, F.V. Coroniti, E.J. Smith, D.A. Gurnett, Nonlocal plasma turbulence associated with interplanetary shocks. J. Geophys. Res. 87, 17 (1982)

  38. G. Khazanov, M. Koen, Y. Konikov, I. Sidorov, Simulation of ionosphere-plasmasphere coupling taking into account ion inertia and temperature anisotropy. Planet. Sp. Sci. 32, 585 (1984)

  39. S.H. Kim, R.L. Merlino, Electron attachment to \(C_{ \mathbf{7}}F_{\mathbf{14}}\) and \(SF_{\mathbf{6}}\) in a thermally ionized potassium plasma. Phys. Rev. E 76, 035401 (2007)

  40. S.H. Kim, J.R. Heinrich, R.L. Merlino, Electrostatic ion-cyclotron waves in a plasma with heavy negative ions. Planet Sp. Sci. 56, 1552 (2008)

  41. S.H. Kim, R.L. Merlino, J.K. Meyer, M. Rosenberg, Low-frequency electrostatic waves in a magnetized, current-free, heavy negative ion plasma. J. Plasma Phys. 79, 1107 (2013)

  42. J.M. Kindel, C.F. Kennel, Topside current instabilities. J. Geophys. Res. 76, 3055 (1971)

  43. P.M. Kintner, M.C. Kelley, F.S. Mozer, Electrostatic hydrogen cyclotron waves near one Earth radius altitude in the polar magnetosphere. Geophys. Res. Lett. 5, 139 (1978)

  44. P.M. Kintner, M.C. Kelley, R.D. Sharp, A.G. Ghielmetti, M. Temerin, C. Cattell, P.F. Mizera, J.F. Fennell, Simultaneous observations of energetic (\(keV\)) upstreaming and electrostatic hydrogen cyclotron waves. J. Geophys. Res. 84, 7201 (1979)

  45. P.M. Kintner, J. Bonnell, R. Arnoldy, K. Lynch, C. Pollock, T. Moore, J. Holtet, C. Deehr, H. Stenbaek-Nielsen, R. Smith, J. Olson, J. Moen, The SCIFER experiment. Geophys. Res. Lett. 23, 1865 (1996)

  46. D.J. Knudsen, J.E. Wahlund, Core ion flux bursts within solitary kinetic Alfvén waves. J. Geophys. Res. 103, 4157 (1998)

  47. M.E. Koepke, W.E. Amatucci, J.J. Carroll III, V. Gavrishchaka, G. Ganguli, Velocity-shear-induced ion-cyclotron turbulence: Laboratory identification and space applications. Phys. Plasmas 2, 2523 (1995)

  48. M.E. Koepke, J.J. Carroll III, M.W. Zintl, Excitation and propagation of electrostatic ion-cyclotron waves in plasma with structured transverse flow, Phys. Plasmas 5, 1671 (1998)

  49. M.E. Koepke, P.K. Shukla, B. Eliasson, Response to “Comment on ‘Electron parallel-flow shear driven low-frequency electromagnetic modes in collisionless magnetoplasma’” [Phys. Plasmas, 094701 (2006)]. Phys. Plasmas 13(9):094702 (2006)

  50. J. Krall, J.D. Huba, SAMI3 simulation of plasmasphere refilling. Geophys. Res. Lett. 40, 2484 (2013)

  51. G.S. Lakhina, Low-frequency electrostatic noise due to velocity shear instabilities in the regions of magnetospheric flow boundaries. J. Geophys. Res. 92, 12161 (1987)

  52. G.S. Lakhina, A.P. Kakad, S.V. Singh, F. Verheest, Ion- and electron-acoustic solitons in two-electron temperature space plasmas. Phys. Plasmas 15, 062903 (2008a)

  53. G.S. Lakhina, S.V. Singh, A.P. Kakad, F. Verheest, R. Bharuthram, Study of nonlinear ion- and electron-acoustic waves in multi-component space plasmas. Nonlinear Proc. Geophys. 15, 903 (2008b)

  54. G.S. Lakhina, S.V. Singh, A.P. Kakad, Ion- and electron-acoustic solitons and double layers in multi-component space plasmas. Adv. Sp. Res. 47, 1558 (2011)

  55. G.S. Lakhina, S.V. Singh, A.P. Kakad, Ion acoustic solitons/double layers in two-ion plasma revisited. Phys. Plasmas 21, 062311 (2014)

  56. G.S. Lakhina, S.V. Singh, R. Rubia, T. Sreeraj, A review of nonlinear fluid models for ion-and electron-acoustic solitons and double layers: application to weak double layers and electrostatic solitary waves in the solar wind and the lunar wake. Phys. Plasmas 25, 080501 (2018)

  57. G. Livadiotis, D.J. McComas, Understanding kappa distributions: a toolbox for space science and astrophysics. Sp. Sci. Rev. 175, 183 (2013)

  58. M. Lockwood, M.O. Chandler, J.L. Horwitz, J.R. Waite Jr., T.E. Moore, C.R. Chappell, The cleft ion fountain. J. Geophys. Res. 90, 9736 (1985)

  59. R. Lundin, L. Eliasson, B. Hultqvist, K. Stasiewicz, Plasma energization on auroral field lines as observed by the Viking spacecraft. Geophys. Res. Lett. 14, 443 (1987)

  60. R. Lysak, M. Hudson, M. Temerin, Ion Heating by strong electrostatic ion cyclotron turbulence. J. Geophys. Res. 85, 678 (1980)

  61. S.K. Maharaj, R. Bharuthram, S.V. Singh, G.S. Lakhina, Existence domains of arbitrary amplitude nonlinear structures in twoelectron temperature space plasmas. I. Low-frequency ion-acoustic solitons. Phys. Plasmas 19, 072320 (2012)

  62. S. Mahmood, H. Saleem, Ion acoustic auroral structures in the presence of hot ion precipitation in the upper ionosphere. J. Geophys. Res. 110, A09306 (2005)

  63. G.T. Marklund, Auroral phenomena related to intense electric fields observed by the Freja satellite. Plasma Phys. Control. Fusion 39, A195 (1997)

  64. G.T. Marklund, Electric fields and plasma processes in the auroral downward current region, below, within, and above the acceleration region. Sp. Sci. Rev. 142, 1 (2009)

  65. G.T. Marklund, L.G. Blomberg, P.A. Lindqvist, C.G. Fälthammar, G. Haerendel, F.S. Mozer, A. Pedersen, P. Tanskanen, The double probe electric field experiment on Freja: experiment description and first results. Sp. Sci. Rev. 70, 483 (1994a)

  66. G.T. Marklund, L. Blomberg, C.G. Fälthammar, P.A. Lindqvist, On intense diverging electric fields associated with black aurora. Geophys. Res. Lett. 21, 1859 (1994b)

  67. J.P. McFadden, C.W. Carlson, R.E. Ergun, F.S. Mozer, M. Temerin, W. Peria, D.M. Klumpar, E.G. Shelley, W.K. Peterson, E. Moebius, L. Kistler, R. Elphic, R. Strangeway, C. Cattell, R. Pfaff, Spatial structure and gradients of ion beams observed by FAST. Geophys. Res. Lett. 25, 2021 (1998)

  68. T.E. Moore, Superthermal ionospheric outflows. Rev. Geophys. Sp. Phys. 22, 264 (1984)

  69. T.E. Moore, Origins of magnetospheric plasma. Rev. Geophys. 29, 1039 (1991)

  70. T.E. Moore, M. Lockwood, M.O. Chandler, J.H. Waite Jr., A. Persoon, Sugiura, Upwelling \(O^{+}\) ion source characteristics. J. Geophys. Res. 91, 7019 (1986)

  71. T.E. Moore, M.O. Chandler, C.J. Pollock, D.L. Reasoner, R.L. Arnoldy, B. Austin, P.M. Kintner, J. Bonnel, Plasma heating and flow in an auroral arc. J. Geophys. Res. 101, 5279 (1996)

  72. F.S. Mozer, C.W. Carlson, M.K. Hudson, R.B. Torbert, B. Parady, J. Yatteau, M.C. Kelley, Observations of paired electrostatic shocks in the polar magnetosphere. Phys. Rev. Lett. 38, 292 (1977)

  73. F.S. Mozer, R. Ergun, M. Temerin, C. Cattell, J. Dombeck, J. Wygant, New features of time domain electric-field structures in the auroral acceleration region. Phys. Rev. Lett. 79, 1281 (1997)

  74. Y. Nakamura, I. Tsukabeyashi, Observation of modified Korteweg-de Vries solitons in a multicomponent plasma with negative ions. Phys. Rev. Lett. 52, 2356 (1984)

  75. K.I. Nishikawa, G. Ganguli, Y.C. Lee, Palmadesso, Simulation of ion-cyclotron-like modes in a magnetoplasma with transverse inhomogeneous electric field. Phys. Fluids 31, 1568 (1988)

  76. K.I. Nishikawa, G. Ganguli, Y.C. Lee, Palmadesso, Simulation of electrostatic turbulence due to sheared flows parallel and transverse to the magnetic field. J. Geophys. Res. 95, 1029 (1990)

  77. Y. Ogawa, S.C. Buchert, R. Fujii, S. Nozawa, A.P. van Eyken, Characteristics of ion upflow and downflow observed with the European Incoherent Scatter Svalbard radar. J. Geophys. Res. 114, A05305 (2009)

  78. Y. Ogawa, M. Sawatsubashi, S.C. Buchert, K. Hosokawa, S. Taguchi, S. Nozawa, S. Oyama, T.T. Tsuda, R. Fujii, Relationship between auroral substorm and ion upflow in the nightside polar ionosphere. J. Geophys. Res. 118, 7426 (2013)

  79. H. Okuda, M. Ashour-Abdalla, Formation of a conical distribution and intense ion heating in the presence of hydrogen cyclotron waves. Geophys. Res. Lett. 8, 811 (1981c)

  80. H. Okuda, K.I. Nishikawa, Ion-beam-driven electrostatic hydrogen cyclotron waves on auroral field lines. J. Geophys. Res. 89, 1023 (1984)

  81. H. Okuda, C.Z. Cheng, W.W. Lee, Numerical simulations of electrostatic hydrogen cyclotron instabilities. Phys. Fluids 24, 1060 (1981a)

  82. H. Okuda, C.Z. Cheng, W.W. Lee, Anomalous diffusion and ion heating in the presence of electrostatic hydrogen cyclotron instabilities. Phys. Rev. Letts. 46, 427 (1981b)

  83. T.G. Onsager, R.H. Holzworth, H.C. Koons, O.H. Bauer, D.H. Gurnett, R.R. Anderson, H. Luhr, C.W. Carlson, J. Geophys. Res. 15, 397 (1989)

  84. W. Oohara, R. Hatakeyama, Pair-ion plasma generation using fullerenes. Phys. Rev. Letts. 91, 205005–1 (2003)

  85. W. Oohara, R. Hatakeyama, Basic studies of the generation and collective motion of pair-ion plasmas. Phys. Plasmas 14, 055704 (2007a)

  86. W. Oohara, D. Date, R. Hatakeyama, Electrostatic waves in a paired Fullerene-ion plasma. Phys. Rev. Lett. 95, 175003 (2005)

  87. W. Oohara, Y. Kuwabara, R. Hatakeyama, Collective mode properties in a paired fullerene-ion plasma. Phys. Rev. E 75, 056403 (2007b)

  88. W. Oohara, M. Fujii, M. Watai, Y. Hiraoka, M. Egawa, Y. Morinaga, S. Takamori, M. Yoshida, Generation of hydrogen ionic plasma superimposed with positive ion beam. AIP Adv. 9, 085303 (2019)

  89. J.S. Pickett, S.W. Kahler, L.J. Chen, R.L. Huff, O. Santolik, Y. Khotyaintsev, P.M.E. Decreau, D. Winningham, R. Frahm, M.L. Goldstein, G.S. Lakhina, B.T. Tsurutani, B. Lavraud, D.A. Gurnett, M. Andre, A. Fazakerley, A. Balogh, H. Reme, Solitary waves observed in the auroral zone: the Cluster multi-spacecraft perspective. Nonlinear Process. Geophys. 11, 183 (2004)

  90. V. Pierrard, J. Lemaire, Lorentzian ion exosphere model. J. Geophys. Res. 101, 7923 (1996)

  91. V. Pierrard, M. Pieters, Coronal heating and solar wind acceleration for electrons, protons, and minor ions obtained from kinetic models based on kappa distributions. J. Geophys. Res. 119, 9441 (2014)

  92. C.J. Pollock, M.O. Chandler, T.E. Moore, J.H. Waite Jr., C.R. Chappell, D.A. Gurnett, A survey of upwelling ion event characteristics. J. Geophys. Res. 95, 18969 (1990)

  93. C.E. Rasmussen, S.M. Guiter, S.G. Thomas, A two-dimensional model of the plasmasphere: refilling time constants. Planet. Sp. Sci. 41, 35 (1993)

  94. R.V. Reddy, G.S. Lakhina, Ion acoustic double layers and solitons in auroral plasma. Planet. Sp. Sci. 39, 1343 (1991)

  95. R.V. Reddy, G.S. Lakhina, F. Verheest, Ion-acoustic double layers and solitons in multispecies auroral beam-plasmas. Planet. Sp. Sci. 40, 1055 (1992)

  96. A. Rehman, S.A. Shan, T. Majeed, Effect of collisions on Weibel instability with anisotropic electron distributions. Phys. Plasmas 24, 122113 (2017)

  97. P.G. Richards, D.G. Torr, Auroral modeling of the 3371 Å emission rate: dependence on characteristic electron energyJ. Geophys. Res. 95, 10337 (1990)

  98. P. Rodriguez, D.A. Gurnett, Electrostatic and electromagnetic turbulence associated with the Earth’s bow shock: Cluster observations. J. Geophys. Res. 81, 2871 (1976)

  99. H. Romero, G. Ganguli, Nonlinear evolution of a strongly sheared crossfield plasma flow. Phys. Fluids B 5, 3163 (1993)

  100. H. Romero, G. Ganguli, Y.C. Lee, on acceleration and coherent structures generated by lower hybrid shear-driven instabilities. Phys. Rev. Lett. 69, 3503 (1992)

  101. M. Rosenberg, R.L. Merlino, Instability of higher harmonic electrostatic ion cyclotron waves in a negative ion plasma. J. Plasma Phys. 75, 495 (2009)

  102. M. Rosenberg, R.L. Merlino, Drift instability in a positive ion-negative ion plasma. J. Plasma Phys. 79, 949 (2013)

  103. A. Roux, S. Perraut, J.L. Rauch, C. De Villedary, G. Kremser, A. Korth, D.T. Young, Wave-particle interactions near \( \Omega _{He^{+}}\) observed on board GEOS 1 and 2: 2. Generation of ion cyclotron waves and heating of \(He^{+}\) ions. J. Geophys. Res. 87, 8174 (1982)

  104. R. Rubia, S.V. Singh, G.S. Lakhina, Existence domains of electrostatic solitary structures in the solar wind plasma. Phys. Plasmas 23, 062902 (2016)

  105. R. Rubia, S.V. Singh, G.S. Lakhina, Occurrence of electrostatic solitary waves in the lunar wake. J. Geophys. Res. Sp. Phys. 122, 9134 (2017)

  106. R. Rubia, S.V. Singh, G.S. Lakhina, Existence domain of electrostatic solitary waves in the lunar wake. Phys. Plasmas 25, 032302 (2018)

  107. O.R. Rufai, R. Bharuthram, S.V. Singh, G.S. Lakhina, Low frequency solitons and double layers in a magnetized plasma with two temperature electrons. Phys. Plasmas 19, 122308 (2012)

  108. O.R. Rufai, R. Bharuthram, S.V. Singh, G.S. Lakhina, Ion acoustic solitons and supersolitons in a magnetized plasma with nonthermal hot electrons and Boltzmann cool electrons. Phys. Plasmas 21, 082304 (2014)

  109. O.R. Rufai, R. Bharuthram, S.V. Singh, G.S. Lakhina, Obliquely propagating ion-acoustic solitons and supersolitons in four-component auroral plasmas. Adv. Sp. Res. 57, 813 (2016)

  110. R.Z. Sagdeev, In reviews of plasma physics, vol. 3 (Consultants Bureau, New York, 1966), p. 23

  111. H. Saleem, Kinetic theory of acoustic wave in pair-ion plasmas. Phys. Plasmas 13, 044502 (2006)

  112. H. Saleem, A criterion for pure pair-ion plasmas and the role of quasineutrality in nonlinear dynamics. Phys. Plasmas 14, 014505 (2007c)

  113. H. Saleem, J. Vranjes, S. Poedts, On the shear flow instability and its applications to multicomponent plasmas. Phys. Plasmas 14, 072104 (2007a)

  114. H. Saleem, J. Vranjes, S. Poedts, Unstable drift mode driven by shear plasma flow in solar spicules. Astron. Astrophys. 471, 289 (2007b)

  115. H. Saleem, S. Ali, Q. Haque, Ion acoustic wave instabilities and nonlinear structures associated with field-aligned flows in the \(F\)-region ionosphere. Phys. Plasmas 23, 112901 (2016)

  116. H. Saleem, S.A. Shan, A. Rehman, Ions shear flow and electron field-aligned current produce ion acoustic waves in the oxygen-hydrogen ionospheric plasma. Phys. Plasmas 24, 122901 (2017)

  117. R.W. Schunk, A.F. Nagy, Rev. Geophys. 16, 355 (1978). https://doi.org/10.1029/RG016i003p00355

  118. S. Sen, R.A. Cairns, R.G. Storer, D.R. McCarthy, Stability and transport of parallel velocity shear driven mode with negative magnetic shear. Phys. Plasmas 7, 1192 (2000)

  119. S.A. Shan, Coupled ion acoustic and drift solitons in a magnetized bi-ion plasma with pseudo-potential approach. Phys. Plasmas 25, 022113 (2018)

  120. S.A. Shan, Q. Haque, Drift and ion acoustic wave driven vortices with superthermal electrons. Phys. Plasmas 19, 084503 (2012)

  121. S.A. Shan, S.A. El-Tantawy, W.M. Moslem, On the fully nonlinear acoustic waves in a plasma with positrons beam impact and superthermal electrons. Phys. Plasmas 20, 082104 (2013)

  122. S.A. Shan, I. Hassan, H. Saleem, Electrostatic wave instability and soliton formation with non-thermal electrons in \(O\)-\(H\) plasma of ionosphere. Phys. Plasmas 26, 022114 (2019)

  123. E.G. Shelley, R.G. Johnson, R.D. Sharp, Satellite observations of energetic heavy ions during a geomagnetic storm. J. Geophys. Res. 77, 6104 (1972)

  124. E.G. Shelley, R.D. Sharp, R.G. Johnson, Satellite observations of an ionospheric acceleration mechanism. Geophys. Res. Lett. 3, 654 (1976)

  125. P.K. Shukla, P.H. Sakanaka, A nonlinear model for auroral density cavities. Geophys. Res. Lett. 27, 89 (2000)

  126. P.K. Shukla, G.T. Birk, R. Bingham, Vortex streets driven by sheared flow and applications to black aurora. Geophys. Res. Lett. 22, 671 (1995)

  127. S.V. Singh, G.S. Lakhina, Ion-acoustic supersolitons in the presence of non-thermal electrons. Commun. Nonlinear Sci. Numer. Simulat. 23, 274 (2015)

  128. R.L. Smith, N. Brice, Propagation in multicomponent plasmas. J. Geophys. Res. 69, 5029 (1964)

  129. T. Sreeraj, S.V. Singh, G.S. Lakhina, Coupling of electrostatic ion cyclotron and ion acoustic waves in the solar wind. Phys. Plasmas 23, 082901 (2016)

  130. T. Sreeraj, S.V. Singh, G.S. Lakhina, Higher harmonic instability of electrostatic ion cyclotron waves. Pramana J. Phys. 92, 78 (2019)

  131. T. Tang, C. Cattell, R. Lysak, L.B. Wilson, L. Dai, S. Thaller, THEMIS observations of electrostatic ion cyclotron waves and associated ion heating near the Earth’s day side magnetopause. J. Geophys. Res. 120, 3380 (2015)

  132. M. Temerin, M. Woldorff, F.S. Mozer, Nonlinear steepening of the electrostatic ion cyclotron wave. Phys. Rev. Lett. 43, 1941 (1979)

  133. R.T. Tsunoda, R.C. Livingston, J.F. Vickrey, R.A. Heelis, W.B. Hanson, F.J. Rich, P.F. Bythrow, J. Geophys. Res. 94, 15,277 (1989)

  134. J.N. Tu, J.L. Horwitz, P. Song, X.Q. Huang, B.W. Reinisch, P.G. Richards, Simulating plasmaspheric field-aligned density profiles measured with IMAGE/RPI: effects of plasmasphere refilling and ion heating. J. Geophys. Res. 108, 1017 (2003)

  135. V.M. Vasyliunas, A survey of low-energy electrons in the evening sector of the magnetosphere with OGO 1 and OGO 3. J. Geophys. Res. 73, 2839 (1968)

  136. F. Verheest, Existence of bulk acoustic modes in pair plasmas. Phys. Plasmas 13, 082301 (2006)

  137. J.E. Wahlund, P. Louarn, T. Chust, H. de Feraudy, A. Roux, B. Holback, B. Cabrit, A.I. Eriksson, P.M. Kinruer, M.C. Kelley, J. Bonnell, S. Chesney, Observations of ion acoustic fluctuations in the auroral topside ionosphere by the FREJA S/C. Geophys. Res. Lett. 21, 1835 (1994a)

  138. J.E. Wahlund, P. Louarn, T. Chust, H. de Feraudy, A. Roux, B. Holback, P.O. Dovner, G. Holmgren, On ion acoustic turbulence and the nonlinear evolution of kinetic Alfvén waves in aurora. Geophys. Res. Lett. 21, 1831 (1994b)

  139. Y. Wang, J. Tu, P. Song, A new dynamic fluid-kineticmodel for plasma transport within the plasmasphere. J. Geophys. Res. Sp. Phys. 108, 1017 (2015)

  140. P. Webb, E. Essex, A dynamic global model of the plasmasphere. J. Atmos. Sol. Terr. Phys. 66, 1057 (2004)

  141. B.A. Whalen, W. Bernstein, P.W. Daly, Low altitude acceleration of ionospheric ions. Geophys. Res. Lett. 5, 55 (1978)

  142. J. Willig, R.L. Merlino, N. D’Angelo, Experimental study of the parallel velocity shear instability. Phys. Lett. A 236, 223 (1997a)

  143. J. Willig, R.L. Merlino, N. D’Angelo, Experimental study of the collisional parallel velocity shear instability. J. Geophys. Res. 102, 27249 (1997b)

  144. G.R. Wilson, Semikinetic modeling of the outflow of ionospheric plasma through the topside collisional to collisionless transition region. J. Geophys. Res. 97, 10551 (1992)

  145. X.Y. Wu, J.L. Horwitz, G.M. Estep, Y.J. Su, D.G. Brown, P.G. Richards, G.R. Wilson, Dynamic fluid-kinetic (DyFK) modeling of auroral plasma outflow driven by soft electron precipitation and transverse ion heating. J. Geophys. Res. 104, 17263 (1999)

  146. X.Y. Wu, J.L. Horwitz, J.N. Tu, Dynamic fluid kinetic (DyFK) simulation of auroral ion transport: synergistic effects of parallel potentials, transverse ion heating, and soft electron precipitation. J. Geophys. Res. 107, 1283 (2002)

  147. A.W. Yau, B.A. Whalen, A.G. McNamara, P.J. Kellogg, W. Bernstein, J. Geophys. Res. 88, 3411 (1983)

  148. A.W. Yau, T. Abe, W.K. Peterson, The polar wind: recent observations. J. Atmos. Sol. Terr. Phys. 69, 1936 (2007)

  149. D.T. Young, S. Perraut, A. Roux, C. De Villedary, R. Gendrin, A. Korth, G. Kremser, D. Jones, Wave-particle interactions near \( \Omega _{He^{+}}\) observed on GEOS 1 and 2: 1. Propagation of ion cyclotron waves in He\(^{+}\)-rich plasma. J. Geophys. Res. 86, 6755 (1981)

Download references

Acknowledgements

One of the authors, Dr. Hamid Saleem is grateful to the Higher Education Commission (HEC), Pakistan, for providing partial support under NRPU Project no. 5841.

Author information

Correspondence to S. Ali Shan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Saleem, H., Shan, S.A. Theoretical models for unstable IAWs and nonlinear structures in the upper ionosphere. Rev. Mod. Plasma Phys. 4, 3 (2020). https://doi.org/10.1007/s41614-019-0038-9

Download citation