Advertisement

Recent progress in research and development of hollow cathodes for electric propulsion

  • Dan R. LevEmail author
  • Ioannis G. Mikellides
  • Daniela Pedrini
  • Dan M. Goebel
  • Benjamin A. Jorns
  • Michael S. McDonald
Topical Collection: Review Paper Recent Progress in Physics of Plasma-Based Space Propulsion
Part of the following topical collections:
  1. Recent Progress in Physics of Plasma-Based Space Propulsion

Abstract

Electric thrusters are finding increasing usage worldwide in spacecraft applications. Significant progress has been made in recent years in the modeling and performance of thermionic hollow cathodes used in flight thrusters, such as Hall and ion thrusters, or other types of plasma sources, such as for technological plasmas. The recent progress is surveyed in this paper through the discussion of six areas: hollow cathode modeling and simulation, low-current hollow cathodes, high-current hollow cathodes, heaterless hollow cathodes, new thermionic insert materials, and plasma oscillations. This includes descriptions of hollow cathode designs capable of < 1 A to over 300 A, advances in electron emitter and heating/starting technologies, and modeling and simulation of the plasma properties, thermal behavior and instabilities in the discharge. Advances in the understanding and technology in these areas and challenges that still need to be addressed and solved are discussed.

Keywords

Hollow cathodes Electric propulsion Low power High power Heaterless Electron emitter Instabilities 

Notes

Compliance with ethical standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

References

  1. B. Afif, Q.A. Abbas, The effect hollow cathode depth on plasma characteristics. Int. J. Sci. Res. (IJSR) 7(2), 1560–1565 (2018).  https://doi.org/10.21275/art2018325 CrossRefGoogle Scholar
  2. R. Agrawal, A. Nieto, H. Chen, M. Mora, A. Agarwal, Nanoscale damping characteristics of boron nitride nanotubes and carbon nanotubes reinforced polymer composites. ACS Appl. Mater. Interfaces. 5, 12052 (2013)CrossRefGoogle Scholar
  3. V.N. Akimov et al., Development of KM-5 Hall effect thruster and its flight testing onboard GEO spacecraft “Express-A4”. Prog. Propuls. Phys. 1, 411–424 (2009)CrossRefGoogle Scholar
  4. L. Albarede, V. Vial, A. Lazurenko, A. Bouchoule, M. Dudeck, Hollow cathode stationary and dynamical behavior: in diode regime and with a Hall thruster, ed. by A.Wilson. Proceedings of the 4th International Spacecraft Propulsion Conference (ESA SP-555). Calgari, Sardinia, Italy (2004)Google Scholar
  5. M. Andrenucci, G. Matticari, Electric propulsion in Italy: status and perspectives, in IEPC-2003-236, 28th IEPC, March 2003, Toulouse, France (2003)Google Scholar
  6. K.L. Aplin, C.M. Collingwood, B.J. Kent, Reliability tests of gated silicon field emitters for use in space. J. Phys. Appl. Phys. 37(14), 2009 (2004)ADSCrossRefGoogle Scholar
  7. K.L. Aplin, B.J. Kent, W. Song, C. Castelli, Field emission performance of multiwalled carbon nanotubes for a low-power spacecraft neutraliser. Acta Astronaut. 64(9), 875–881 (2009)ADSCrossRefGoogle Scholar
  8. K.L. Aplin et al., Use of coated silicon field emitters as neutralisers for fundamental physics space missions. Adv. Space Res. 48(7), 1265–1273 (2011)ADSCrossRefGoogle Scholar
  9. N. Arcis et al., Database on EP (and EP-Related) technologies and TRL. Centre National d’Etudes Spatiales, pp. 1–73 (2015)Google Scholar
  10. A. Arkhopov, K.N. Kozubsky, The development of the cathode compensators for stationary plasma thrusters in the USSR, in 22nd International Electric Propulsion Conference, paper IEPC-91-023, Viareggio, Italy, 14–17 Oct 1991 (1991)Google Scholar
  11. Aspects of advanced neutralizer development for the RIT-2x family of gridded ion engines, in Space Propulsion Conference, 14–18 May 2018, Seville, Spain. SP2018_00471Google Scholar
  12. G. Aston, Hollow cathode startup using a microplasma discharge. Rev. Sci. Instrum. 52(8), 1259–1260 (1981)ADSCrossRefGoogle Scholar
  13. G. Aston (1984), FERM cathode operation on the test bed ion engine, in 17th International Electric Propulsion Conference (IEPC), Tokyo, Japan, IEPC-84-87 (1984)Google Scholar
  14. G. Aston, W.D. Deininger, Test bed ion engine development. Report No. CR-174623. Pasadena: Jet Propulsion Laboratory (NASA JPL). Print (1984)Google Scholar
  15. L. Balika, B. Laurent, J. Rabin, M. Diome, O. Duchemin, J.-M. Lonchard, X. Cavelan, Development of a cathode for the PPS®5000 Hall thruster unit, in IEPC-2017-416, 35th International Electric Propulsion Conference, Georgia Institute of Technology, 8–12 Oct 2017 (2017)Google Scholar
  16. O. Baranov, K. Bazaka, H. Kersten, M. Keidar, U. Cvelbar, S. Xu, I. Levchenko, Plasma under control: advanced solutions and perspectives for plasma flux management in material treatment and nanosynthesis. Appl. Phys. Rev. 4(4), 041302 (2017).  https://doi.org/10.1063/1.5007869 ADSCrossRefGoogle Scholar
  17. J.R. Beattie, J.N. Matossian, R.L. Poeschel, Xenon ion propulsion system. J. Propuls. 5(4), 438–444 (1989)CrossRefGoogle Scholar
  18. G. Becatti, D.M. Goebel, J.E. Polk, P. Guerrero, Life evaluation of a lanthanum hexaboride hollow cathode for high-power Hall thrusters. J. Propuls. Power (2018).  https://doi.org/10.2514/1b36659 CrossRefGoogle Scholar
  19. A. Behroozfar, S. Daryadel, S.R. Morsali, S. Moreno, M. Baniasadi, R.A. Bernal, M. Minary-Jolandan, Microscale 3D printing of nanotwinned copper. Adv. Mater. 30, 1705107 (2017).  https://doi.org/10.1002/adma.201705107 CrossRefGoogle Scholar
  20. G.F. Benavides, H. Kamhawi, J. Mackey, T. Haag, G. Costa, Iodine Hall-effect electric propulsion system research, development, and system durability demonstration, in 2018 Joint Propulsion Conference, p. 4422 (2018)Google Scholar
  21. D. Bock, C. Drobny, P. Laufer, M. Kössling, M. Tajmar, Development and testing of electric propulsion systems at TU Dresden, in 52nd AIAA/SAE/ASEE Joint Propulsion Conference, American Institute of Aeronautics and Astronautics, Salt Lake City, UT, USA (2016)Google Scholar
  22. F. Boeschoten, R. Komen, A. Sens, An investigation of the positive column of a hollow cathode arc in a magnetic field. Part I. Zeitschrift für Naturforschung A 34(8), 1009–1021 (1979)ADSCrossRefGoogle Scholar
  23. S.I. Braginskii, Transport processes in a plasma, in Reviews of Plasma Physics, ed. by M.A. Leontovich (Consultants Bureau, New York, 1965), pp. 205–311Google Scholar
  24. J.R. Brophy, NASA’s Deep Space 1 ion Engine. Rev. Sci. Instrum. 73(2), 1071–1078 (2002)ADSCrossRefGoogle Scholar
  25. J. Brophy, C. Garner, Tests of high current hollow cathodes for ion engines, in 24th AIAA Joint Propulsion Conference, AIAA-1988-2913, 10.2514/6 (1988a)Google Scholar
  26. J. Brophy, C. Garner, Tests of high-current cathodes for ion engines, in 24th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Boston, MA, AIAA-1988-2193, July 1988 (1988b)Google Scholar
  27. J. Brophy, C. Garner, A 5,000 hour xenon hollow cathode life test, in AIAA-91-2122, 27th AIAA Joint Propulsion Conference, Sacramento, CA, 24–26 June 1991 (1991)Google Scholar
  28. J.R. Brophy, D.E. Brinza, J.E. Polk, M.D. Henry, A. Sengupta, The DSI hyper-extended mission, in 38th Joint Propulsion Conference, Indianapolis, Indiana, AIAA-2002-3673, 7–10 July 2002 (2002)Google Scholar
  29. Busek Space Propulsion and Systems, Busek Hollow Cathodes (Busek Co., Inc., Natick, 2013)Google Scholar
  30. V.Y. Bychenkov, V.P. Silin, S.A. Uryupin, Ion-acoustic turbulence and anomalous transport. Phys. Rep. Rev. Sect. Phys. Lett. 164(3), 119–215 (1988)Google Scholar
  31. D.C. Byers, W.R. Kerslake, J.F. Staggs, SERT II—mission and experiments. J. Spacecr. Rockets 7(1), 4–6 (1970).  https://doi.org/10.2514/3.29854 ADSCrossRefGoogle Scholar
  32. S. Cao, J.X. Ren, H.B. Tang, Z. Zhang, Y.B. Wang, J.B. Cao, Z.Y. Chen, Numerical simulation of plasma power deposition on hollow cathode walls using particle-in-cell and Monte Carlo collision method. Phys. Plasmas 25(10), 103512 (2018)ADSCrossRefGoogle Scholar
  33. M. Capacci, M. Minucci, A. Severi, Simple numerical model describing discharge parameters in orificed hollow cathode devices, in AIAA-97-2791, 33rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Seattle, WA (1997)Google Scholar
  34. A.M. Capece, J.E. Polk, I.G. Mikellides, J.E. Shepherd, Oxygen transport in the internal xenon plasma of a dispenser hollow cathode. J. Appl. Phys. 115(15), 153302 (2014)ADSCrossRefGoogle Scholar
  35. O. Cherkun, D. Uluşen, Cesium hollow cathode with internal discharge and gas feed for electric propulsion applications, in IEPC-2017-259, 35th International Electric Propulsion Conference, Georgia Institute of Technology, 8–12 Oct 2017 (2017)Google Scholar
  36. E.Y. Choueiri, Review: “a critical history of electric propulsion: the first 50 years (1906–1956)”. J. Propuls. Power 20(2), 193–203 (2004).  https://doi.org/10.2514/1.9245 CrossRefGoogle Scholar
  37. E. Chu, D.M. Goebel, “High current lanthanum hexaboride hollow cathode for 10 to 50 kW Hall thrusters. IEEE Trans. Plasma Sci. 20(9), 2133–2144 (2012)ADSCrossRefGoogle Scholar
  38. M. Coletti, S. Gabriel, Insert temperature measurements of a 180A hollow cathode for the HiPER Project, in 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit (2012)Google Scholar
  39. F. Crawford, S. Gabriel, Microfluidic model of a micro hollow cathode for small ion thrusters (invited), in 33rd AIAA Fluid Dynamics Conference and Exhibit, Fluid Dynamics and Co-located Conferences. American Institute of Aeronautics and Astronautics (2003)Google Scholar
  40. G. Csiky, Investigation of a hollow cathode discharge plasma, in 7th Electric Propulsion Conference, International Electric Propulsion Conference. American Institute of Aeronautics and Astronautics (1969)Google Scholar
  41. S. Cusson, Z. Brown, E. Dale, B.A. Jorns, A.D. Gallimore, Ion acoustic turbulence in the hollow cathode plume of a Hall effect thruster, Cincinnati, OH, in 2018 Joint Propulsion Conference, AIAA 2018-4509 (2018)Google Scholar
  42. J. Dankanich, J.J. Szabo, B. Pote, S. R. Oleson, H. Kamhawi, Mission and system advantages of iodine Hall thrusters, in 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, p. 3905 (2014)Google Scholar
  43. J.W. Dankanich, M. Selby, K.A. Polzin, H. Kamhawi, T. Hickman, L. Byrne, The Iodine Satellite (iSat) project development towards Critical Design Review (CDR), in 52nd AIAA/SAE/SEE Joint Propulsion Conference, Salt Lake City, UT, 25–27 July 2016. No. AIAA-2016-4540 (2016)Google Scholar
  44. R.C. Davidson, N.A. Krall, Anomalous transport in high-temperature plasmas with applications to solenoidal fusion systems. Nucl. Fusion 17(6), 1313–1372 (1977)ADSCrossRefGoogle Scholar
  45. A. Daykin-Iliopoulos, S. Gabriel, I. Golosnoy, K. Kubota, I. Funaki, Investigation of heaterless hollow cathode breakdown, in 34th International Electric Propulsion Conference (IEPC), 6–9 July 2015, Hyogo-Kobe, Japan, IEPC-2015-193 (2015)Google Scholar
  46. A. Daykin-Iliopoulos, I. Golosnoy, S. Gabriel, Thermal profile of a lanthanum hexaboride heaterless hollow cathode, in 35th International Electric Propulsion Conference (IEPC), Atlanta, GA, USA, Oct 2017. No. IEPC-2017-291 (2017)Google Scholar
  47. A. Daykin-Iliopoulos, S. Gabriel, I. Golosnoy, Development of a high current heaterless hollow cathode, in 6th Space Propulsion Conference (SPC), 14–18 May 2018, Seville, Spain. No. SP2018-286 (2018)Google Scholar
  48. K.H. De Grys, B. Welander, J. Dimicco, S. Wenzel, B. Kay et al., 4.5 kW Hall thruster system qualification status, in Joint Propulsion Conference (JPC), AIAA Paper 2005-3682, July 2005 (2005)Google Scholar
  49. K.D. Diamant, Resonant cavity plasma electron source. IEEE Trans. Plasma Sci. 37(8), 1558–1562 (2009)ADSCrossRefGoogle Scholar
  50. C. Dodson, B.A. Jorns, R. Wirz, Ion acoustic wave propagation and heating in a high-current hollow cathode plume, in 35th International Electric Propulsion Conference, Atlanta, GA, IEPC-2017-398, 8–12 Oct 2017 (2017)Google Scholar
  51. C. Dodson, D. Perez-Grande, B.A. Jorns, D.A. Goebel, R. Wirz, Ion heating measurements on the centerline of a high-current hollow cathode plume. J. Propuls. Power 34(5), 1225–1234 (2018)CrossRefGoogle Scholar
  52. M.T. Domonkos, Evaluation of low-current orificed hollow cathodes, Ph.D. Dissertation, The University of Michigan (1999)Google Scholar
  53. M. Domonkos, A particle and energy balance model of the orificed hollow cathode, in 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Joint Propulsion Conferences. American Institute of Aeronautics and Astronautics (2002)Google Scholar
  54. C. Drobny, F. Nürmberger, M. Tajmar, Development of a compact Hall thruster with a C12A7 low-power hollow cathode, in Space Propulsion Conference, p. SP2016_3124751 (2016)Google Scholar
  55. C. Drobny, J.W. Wulfkühler, K. Wätzig, M. Tajmar, Detailed work function measurements and development of a hollow cathode using the emitter material C12A7 electride, in Space Propulsion Conference, 14–18 May 2018, Seville, Spain. SP2018_92 (2018)Google Scholar
  56. C. Ducci, S. Oslyak, D. Dignani, R. Albertoni, M. Andrenucci, HT100D performance evaluation and endurance test results, in 33rd International Electric Propulsion Conference (IEPC), 6–10 Oct 2013, Washington, DC, USA. IEPC-2013-140 (2013)Google Scholar
  57. C. Ducci, T. Misuri, S. Gregucci, D. Pedrini, K. Dannenmayer, Magnetically shielded HT100 experimental campaign, in 35th International Electric Propulsion Conference (IEPC), 8–12 Oct 2017, Atlanta, GA, USA. IEPC-2017-372 (2017)Google Scholar
  58. S. Dushman, Electron emission from metals as a function of temperature. Phys. Rev. 21(6), 0623–0636 (1923)ADSCrossRefGoogle Scholar
  59. H. Eichhorn et al., Paschen’s law for a hollow cathode discharge. Appl. Phys. Lett. 63(18), 2481–2483 (1993).  https://doi.org/10.1063/1.110455 ADSCrossRefGoogle Scholar
  60. D. Fearn, S. Patterson, Journal: Spacecraft Propulsion, Third International Conference held 1013 October 2000 at Cannes, France, ed. by R.A. Harris. European Space Agency ESASP-465, p. 587 (2001)Google Scholar
  61. D. Fearn, A. Singfield, N. Wallace, S. Gair, P. Harris, The operation of ion thruster hollow cathodes using rare gas propellants (1990)Google Scholar
  62. E. Feizi, A.K. Ray, 12CaO·7Al2O3 ceramic: a review of the electronic and optoelectronic applications in display devices. J. Disp. Technol. 12(5), 451–459 (2016)ADSCrossRefGoogle Scholar
  63. J. Foster, M.J. Patterson, Microwave ECR ion thruster development activities at NASA Glenn Research Center, in 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit (2002)Google Scholar
  64. C. Gasdaska, P. Falkos, M. Robin, V. Hruby, N. Demmons, R. McCormick, Testing of carbon nanotube field emission cathodes, in 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. American Institute of Aeronautics and Astronautics (2004)Google Scholar
  65. M.P. Georgin, B.A. Jorns, A.D. Gallimore, An experimental and theoretical study of hollow cathode plume mode oscillations, in 35rd International Electric Propulsion Conference, Atlanta, GA, IEPC-2017-298, October 2017 (2017)Google Scholar
  66. M.P. Georgin, B.A. Jorns, A.D. Gallimore, Plasma instabilities in the plume of a hollow cathode, Cincinnati, OH, in 2018 Joint Propulsion Conference, AIAA-2018-4427 (2018)Google Scholar
  67. V.A. Godyak, Y. Raitses, N.J. Fisch, RF plasma cathode-neutralizer for space application, in Proceedings of the 30th International Electric Propulsion Conference, Florence, Italy, p. IEPC 2007-266 (2007)Google Scholar
  68. D.M. Goebel, E. Chu, High-current lanthanum hexaboride hollow cathode for high-power Hall thrusters. J. Propuls. Power 30, 35–40 (2014).  https://doi.org/10.2514/1.B34870 CrossRefGoogle Scholar
  69. D.M. Goebel, I. Katz, Fundamentals of Electric Propulsion: Ion and Hall Thrusters (Wiley, Hoboken, NJ, 2008)CrossRefGoogle Scholar
  70. D.M. Goebel, J.E. Polk, Lanthanum hexaboride hollow cathode for the asteroid redirect robotic mission 12.5 kW Hall thrusters, in IEPC-2015-43, 34rd International Electric Propulsion Conference, Kobe, Japan, 4–6 July 2015 (2015)Google Scholar
  71. D.M. Goebel, J.E. Polk, Lanthanum hexaboride hollow cathode performance and wear testing for the asteroid redirect mission Hall thruster, in AIAA 2016-4835, 52nd Joint Propulsion Conference, Salt Lake City, UT, 25–27 July 2016 (2016)Google Scholar
  72. D.M. Goebel, R. Watkins, LaB6 hollow cathodes for ion and Hall thrusters, in AIAA-2005-4239, 41st Joint Propulsion Conference, Tucson, AZ, 11–13 July 2005 (2005)Google Scholar
  73. D.M. Goebel, R.M. Watkins, Compact lanthanum hexaboride hollow cathode. Rev. Sci. Instrum. 81, 083504 (2010)ADSCrossRefGoogle Scholar
  74. D.M. Goebel, J.T. Crow, A.T. Forrester, Lanthanum hexaboride hollow cathode for dense plasma production. Rev. Sci. Instrum. 49, 469–472 (1978)ADSCrossRefGoogle Scholar
  75. D.M. Goebel, K.K. Jameson, R.M. Watkins, I. Katz, I.G. Mikellides, Hollow cathode theory and experiment. I. Plasma characterization using fast miniature scanning probes. J. Appl. Phys. 98(11), 113302 (2005)ADSCrossRefGoogle Scholar
  76. D.M. Goebel, K. Jameson, I. Katz, I. Mikellides, J. Polk, Energetic ion production and keeper erosion in hollow cathode discharges, in IEPC-2005-266, 29th International Electric Propulsion Conference, Princeton University, 31 Oct–4 Nov 2005 (2005b)Google Scholar
  77. D.M. Goebel, K.K. Jameson, I. Katz, I.G. Mikellides, Potential fluctuations and energetic ion production in hollow cathode discharges. Phys. Plasmas 14(10), 103508 (2007a)ADSCrossRefGoogle Scholar
  78. D.M. Goebel, R.M. Watkins, K. Jameson, LaB6 hollow cathodes for ion and Hall thrusters. J. Propuls. Power 23(3), 527–528 (2007b).  https://doi.org/10.2514/1.25475 CrossRefGoogle Scholar
  79. D.M. Goebel, K.K. Jameson, I. Katz, I.G. Mikellides, Plasma potential behavior and plume mode transitions in hollow cathode discharge, in 30th International Electric Propulsion Conference, Florence, Italy, IEPC-2007-027, September 2007 (2007c)Google Scholar
  80. D.M. Goebel, K.K. Jameson, R.R. Hofer, Hall thruster cathode flow impacts on cathode coupling and cathode life. J. Propuls. Power 28(2), 355–363 (2012)CrossRefGoogle Scholar
  81. D.M. Goebel, G. Becatti, S. Reilly, K. Tilley, High current lanthanum hexaboride hollow cathode for 50-200 kW Hall thrusters, in IEPC-2017-303, 35th International Electric Propulsion Conference, Georgia Institute of Technology, 8–12 Oct 2017 (2017)Google Scholar
  82. O.A. Gorshkov et al., The GEOSAT electrical propulsion subsystem based on the KM-45 HET. Acta Astronaut. 63(1–4), 367–378 (2008)ADSCrossRefGoogle Scholar
  83. P. Guerrero, I.G. Mikellides, J.E. Polk, Hollow cathode thermal modelling and self-consistent solutions. Work function evaluation for a LaB6 cathode, in 54th AIAA/SAE/ASEE Joint Propulsion Conference, AIAA Propulsion and Energy Forum: American Institute of Aeronautics and Astronautics (2018)Google Scholar
  84. S. Hall, NASA GRC, Private Communication (2018)Google Scholar
  85. S.J. Hall, B.A. Jorns, A.D. Gallimore, H. Kamhawi, T.W. Haag, J.A. Mackey, J.H. Gilland, R.Y. Peterson, M.J. Baird, High-power performance of a 100-kW class nested Hall thruster, in IEPC-2017-228, 35th International Electric Propulsion Conference, Georgia Institute of Technology, 8–12 Oct 2017 (2017)Google Scholar
  86. W.A. Hanson, Satellite internet in the mobile age. New Space 4(3), 138–152 (2016).  https://doi.org/10.1089/space.2016.0019 ADSCrossRefGoogle Scholar
  87. K. Hara, K. Kubota, Direct kinetic simulation of ion acoustic turbulence in cathode plume, in 35th International Electric Propulsion Conference, Atlanta, Georgia, IEPC-2017-496, 8–12 Oct 2017 (2017)Google Scholar
  88. F.G. Heymann, Breakdown in cold-cathode tubes at low pressure. Proc. Phys. Soc. Sect. B 63(1), 25–41 (1950).  https://doi.org/10.1088/0370-1301/63/1/305 ADSCrossRefGoogle Scholar
  89. A.K. Ho, B.A. Jorns, I.G. Mikellides, D.M. Goebel, A.Lopez-Ortega, Wear test demonstration of a technique to mitigate keeper erosion in a high-current LaB6 hollow cathode, in AIAA-2016-4836, 52nd AIAA Joint Propulsion Conference, Salt Lake City, UT, 25–27 July 2016 (2016)Google Scholar
  90. Hollow cathode plasma electron emitters for ground-based and space-based applications. Electric Propulsion Laboratory, Inc. Hollow Cathode Electron Emitters, www.electricpropulsionlaboratory.com/Emitters.htm. Accessed on 24 April 2019
  91. H. Hosono, Exploring electro-active functionality of transparent oxide materials. Jpn. J. Appl. Phys. 52(9R), 090001 (2013)ADSCrossRefGoogle Scholar
  92. H. Hosono, J. Kim, Y. Toda, T. Kamiya, S. Watanabe, Transparent amorphous oxide semiconductors for organic electronics: application to inverted OLEDs. Proc. Natl. Acad. Sci. 114(2), 233–238 (2017)CrossRefGoogle Scholar
  93. W. Huang, H. Kamhawi, T. Haag, Plasma oscillation characterization of NASA’s HERMeS Hall thruster via high speed imaging, in 52nd AIAA/SAE/ASEE Joint Propulsion Conference, Salt Lake City, UT, AIAA_2016-4829 (2016)Google Scholar
  94. D. Ilić, Low-frequency flute instabilities of a hollow cathode arc discharge: theory and experiment. Phys. Fluids B Plasma Phys. 16(7), 1042–1053 (1973)ADSGoogle Scholar
  95. Y. Jia, N. Guo, J. Li, Y. Sun, W. Yang, T. Zhang, L. Ma, W. Meng, H. Geng, Current status of 5A Lab6 hollow cathode life tests in Lanzhou Institute of Physics, China. Int. J. Math. Comput. Phys. Electric. Comput. Eng. 9(11), 686–689 (2015)Google Scholar
  96. B.A. Jorns, R. Hofer, Plasma oscillations in a 6-kW magnetically shielded Hall thruster. Phys. Plasmas 21, 053512 (2014)ADSCrossRefGoogle Scholar
  97. B.A. Jorns, I.G. Mikellides, D.M. Goebel, Ion acoustic turbulence in a 100-A LaB6 hollow cathode. Phys. Rev. E 90(6), 063106 (2014)ADSCrossRefGoogle Scholar
  98. B.A. Jorns, I.G. Mikellides, D.A. Goebel, A. Lopez Ortega, Mitigation of energetic ions and keeper erosion in a high-current hollow cathode, in 34th International Electric Propulsion Conference, Hyogo-Kobe, Japan, IEPC-2015-134, 4–10 July 2015 (2015)Google Scholar
  99. B.A. Jorns, C. Dodson, J. Anderson, D.A. Goebel, R. Hofer, M. Sekerak, A. Lopez Ortega, I.G. Mikellides, Mechanisms for pole piece erosion in a 6-kW magnetically-shielded Hall thruster, in 52nd AIAA/SAE/ASEE Joint Propulsion Conference, Salt Lake City, UT, AIAA-2016-4839 (2016)Google Scholar
  100. B.A. Jorns, C. Dodson, D.A. Goebel, R. Wirz, Propagation of ion acoustic wave energy in the plume of a high-current LaB6 hollow cathode. Phys. Rev. E 96, 023208 (2017)ADSCrossRefGoogle Scholar
  101. R. Joussot, L. Grimaud, S. Mazouffre, Examination of a 5 A-class cathode with a LaB6 flat disk emitter in the 2 A–20 A current range. Vacuum 146, 52–62 (2017)ADSCrossRefGoogle Scholar
  102. H. Kamhawi, J. VanNoord, Development and testing of high current hollow cathodes for high power Hall thrusters, in 48th AIAA Joint Propulsion Conference & Exhibit, AIAA Paper 2012-4080 (2012)Google Scholar
  103. H. Kamhawi, J. Foster, M. Patterson, Operation of a microwave electron cyclotron resonance cathode, in 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Fort Lauderdale, Florida (2004)Google Scholar
  104. S. Kang, W. Choo, J. Choi, Y. Jeong, Y. Kim, S. Kang, H. Kuninaka, H. Cha, Cathode power development of Hall thruster for small satellite using microwave cathode. J. Korean Soc. Aeronaut. Space Sci. 42(11), 974–980 (2014)ADSGoogle Scholar
  105. I. Katz, B.M. Gardner, M.J. Mandell, G.A. Jongeward, M. Patterson, R.M. Myers, Model of plasma contactor performance. J. Spacecr. Rockets 34(6), 824–828 (1997)ADSCrossRefGoogle Scholar
  106. I. Katz, J.R. Anderson, J.E. Polk, J.R. Brophy, One-dimensional hollow cathode model. J. Propuls. Power 19(4), 595–600 (2003)CrossRefGoogle Scholar
  107. I. Katz, I.G. Mikellides, J.E. Polk, D.M. Goebel, S.E. Hornbeck, Thermal model of the hollow cathode using numerically simulated plasma fluxes. J. Propuls. Power 23(3), 522–527 (2007)CrossRefGoogle Scholar
  108. I. Katz, I.G. Mikellides, D.M. Goebel, J.E. Polk, Insert heating and ignition in inert-gas hollow cathodes. IEEE Trans. Plasma Sci. 36(5), 2199–2206 (2008)ADSCrossRefGoogle Scholar
  109. D. Katz-Franco, D. Lev, Conceptual design of a radiative cooling system for heaterless hollow cathodes, in Proceedings of the 34th International Electric Propulsion Conference (IEPC), 4–10 July 2015, Hyogo-Kobe, Japan, IEPC-2015-164 (2015)Google Scholar
  110. H. Kaufman, Technology of electron bombardment ion thruster, in Advances in Electronics and Electronic Physics, ed. by L. Marton (Academic Press, New York, NY, 1974), pp. 265–373Google Scholar
  111. W.R. Kerslake, L.R. Ignaczak, Development and flight history of SERT II spacecraft. J. Spacecr. Rockets 30(3), 258–290 (1993)ADSCrossRefGoogle Scholar
  112. R. Killinger, H. Bassner, G. Kienlein, J. Mueller, Electric propulsion system RITA for ARTEMIS, in AIAA-99-2271, 35th Joint Propulsion Conference and Exhibit, Los Angeles, CA, USA (1999)Google Scholar
  113. R. Killinger, R. Kukies, M. Surauer, A. Tomasetto, L. van Holtz, ARTEMIS orbit raising inflight experience with ion propulsion. Acta Astronaut. 53, 607–621 (2003)ADSCrossRefGoogle Scholar
  114. S.W. Kim, H. Hosono, Synthesis and properties of 12CaO·7Al2O3 electride: review of single crystal and thin film growth. Philos. Mag. 92(19–21), 2596–2628 (2012)ADSCrossRefGoogle Scholar
  115. S.W. Kim, Y. Toda, K. Hayashi, M. Hirano, H. Hosono, Synthesis of a room temperature stable 12CaO·7Al2O3 electride from the melt and its application as an electron field emitter. Chem. Mater. 18(7), 1938–1944 (2006)CrossRefGoogle Scholar
  116. S.W. Kim, S. Matsuishi, M. Miyakawa, K. Hayashi, M. Hirano, H. Hosono, Fabrication of room temperature-stable 12CaO·7Al2O3 electride: a review. J. Mater. Sci.: Mater. Electron. 18(1), 5–14 (2007)Google Scholar
  117. S.W. Kim, T. Shimoyama, H. Hosono, Solvated electrons in high-temperature melts and glasses of the room-temperature stable electride [Ca24Al28O64]4+·4e. Science 333(6038), 71–74 (2011)ADSCrossRefGoogle Scholar
  118. N. Kishi, Management analysis for the space industry. Space Policy 39–40, 1–6 (2017).  https://doi.org/10.1016/j.spacepol.2017.03.006 ADSCrossRefGoogle Scholar
  119. N. Koch, H.-P. Harmann, G. Kornfeld, Status of the THALES tungsten/osmium mixed-metal hollow cathode neutralizer development, in 30th International Electric Propulsion Conference (IEPC), Florence, Italy, IEPC-2007-117, Sept 2007 (2007)Google Scholar
  120. H. Koizumi, H. Kuninaka, Performance evaluation of a miniature ion thruster μ1 with a unipolar and bipolar operation, in IEPC-2011-297, 32nd International Electric Propulsion Conference, Wiesbaden, Germany, 11–15 Sept 2011 (2011)Google Scholar
  121. N.N. Koshelev, A.V. Loyan, Researching of self-heated hollow cathodes start erosion characteristics, in 25th Joint Propulsion Conference (JPC), 20–24 June 1999. Los Angeles, CA, USA. AIAA-99-2863 (1999)Google Scholar
  122. N.N. Koshelev, A.V. Loyan, Investigation of hollow cathode for low power Hall effect thruster, in 30th International Electric Propulsion Conference (IEPC), 17–20 Sept 2007, Florence, Italy. IEPC-2007-103 (2007)Google Scholar
  123. K. Kubota, Y. Oshio, H. Watanabe, S. Cho, Y. Ohkawa, I. Funaki, Hybrid-PIC simulation on plasma flow of hollow cathode. Trans. Jpn. Soc. Aeronaut. Space Sci. Aerosp. Technol. Jpn. 14(ists30), Pb_189–Pb_195 (2016)Google Scholar
  124. H. Kuninaka, S. Satori, Development and demonstration of a cathodeless electron cyclotron resonance ion thruster. J. Propuls. Power 14(6), 1022–1026 (1998)CrossRefGoogle Scholar
  125. H. Kuninaka, K. Nishiyama, I. Funaki, T. Yamada, Y. Shimizu, J. Kawaguchi, Powered flight of electron cyclotron resonance ion engines on Hayabusa explorer. J. Propuls. Power 23(3), 544–551 (2007)CrossRefGoogle Scholar
  126. H. Kurt et al., Note: coaxial-heater hollow cathode. Rev. Sci. Instrum. 88(6), 066103 (2017)ADSCrossRefGoogle Scholar
  127. J.M. Lafferty, Boride cathodes. J. Appl. Phys. 22, 299–309 (1951)ADSCrossRefGoogle Scholar
  128. O. Lane, A. Knoll, Quad confinement thruster—industrialisation & flight integration, in 34th International Electric Propulsion Conference, Hyogo-Kobe, Japan, IEPC-2015-36, 4–10 July 2015 (2015)Google Scholar
  129. H. Lee, E. Lee, S. Choi, S. So, E.H. Kim, S. Kang, Y. Kim, Y. Jeong, A.M. Al Sayegh, M.L. Cerrón, Development of low power Hall effect propulsion system with improved system efficiency for small satellite applications, in Space Propulsion Conference, 14–18 May 2018, Seville, Spain. SP2018_181 (2018)Google Scholar
  130. D.R. Lev, Gal Alon, Operation of a hollow cathode neutralizer for sub-100-W Hall and ion thrusters. IEEE Trans. Plasma Sci. 46(2), 311–318 (2018).  https://doi.org/10.1109/tps.2017.2779409 ADSCrossRefGoogle Scholar
  131. D. Lev, L. Appel, Heaterless hollow cathode technology—a critical review, in 5th Space Propulsion Conference (SPC), 2–6 May 2016, Rome, Italy, SP2016_3125366 (2016)Google Scholar
  132. D. Lev, G. Alon, D. Mykytchuk, L. Appel, Development of a low current heaterless hollow cathode for Hall thrusters, in 34th International Electric Propulsion Conference (IEPC), 6–10 July 2015, Kobe, Japan, IEPC-2015-163/ISTS-2015-b-163 (2015)Google Scholar
  133. D. Lev, G. Alon, D. Mykytchuk, L. Appel, Heaterless hollow cathode characterization and 1,500 hr wear test, in 52nd Joint Propulsion Conference (JPC), 25–27 July 2016, Salt Lake City, UT, USA. AIAA-2016-4732 (2016)Google Scholar
  134. D. Lev, G. Alon, L. Appel, O. Seeman, Y. Hadas, Low current heaterless hollow cathode development overview, in 35th International Electric Propulsion Conference (IEPC), 8–12 Oct 2017, Atlanta, GA, USA. IEPC-2017-244 (2017)Google Scholar
  135. D.R. Lev et al., A 5,000-hr heaterless hollow cathode endurance test, in 2018 Joint Propulsion Conference, Aug 2018 (2018).  https://doi.org/10.2514/6.2018-4426
  136. D. Lev, R.M. Myers, K.M. Lemmer, J. Kolbeck, H. Koizumi, K. Polzin, The technological and commercial expansion of electric propulsion. Acta Astronaut. 159, 213–227 (2019).  https://doi.org/10.1016/j.actaastro.2019.03.058 ADSCrossRefGoogle Scholar
  137. I. Levchenko, I.I. Beilis, M. Keidar, Nanoscaled metamaterial as an advanced heat pump and cooling media. Adv. Mater. Technol. 1(2), 1600008 (2016).  https://doi.org/10.1002/admt.201600008 CrossRefGoogle Scholar
  138. I. Levchenko, S. Xu, S. Mazouffre, M. Keidar, K. Bazaka, Mars colonization: beyond getting there. Global Chall. 2, 1800062 (2018a).  https://doi.org/10.1002/gch2.201800062 CrossRefGoogle Scholar
  139. I. Levchenko, M. Keidar, J. Cantrell, Y.L. Wu, H. Kuninaka, K. Bazaka, S. Xu, Explore space using swarms of tiny satellites. Nature 562, 185–187 (2018b).  https://doi.org/10.1038/d41586-018-06957-2 ADSCrossRefGoogle Scholar
  140. I. Levchenko et al., Space micropropulsion systems for Cubesats and small satellites: from proximate targets to furthermost frontiers. Appl. Phys. Rev. 5, 011104 (2018c)ADSCrossRefGoogle Scholar
  141. I. Levchenko, S. Xu, G. Teel, D. Mariotti, M.L. Walker, M. Keidar, Recent progress and perspectives of space electric propulsion systems based on smart nanomaterials. Nat. Commun. 9, 879 (2018d).  https://doi.org/10.1038/s41467-017-02269-7 ADSCrossRefGoogle Scholar
  142. W.-B. Li et al., Study on electrons conduction paths in Hall thruster ignition processes with the cathode located inside and outside the magnetic separatrix. Acta Astronaut. (2018).  https://doi.org/10.1016/j.actaastro.2018.11.027 CrossRefGoogle Scholar
  143. L.M. Lidsky, S.D. Rothleder, D.J. Rose, S. Yoshikawa, C. Michelson, R.J. Mackin Jr., Highly ionized hollow cathode discharge. J. Appl. Phys. 33, 2490 (1962).  https://doi.org/10.1063/1.1729002 ADSCrossRefGoogle Scholar
  144. V.A. Lisovskiy et al., Low-pressure gas breakdown in uniform DC electric field. J. Phys. D Appl. Phys. 33, 2722–2730 (2000)ADSCrossRefGoogle Scholar
  145. B. Longmier, N. Hershkowitz, Improved operation of the nonambipolar electron source. Rev. Sci. Instrum. 79(9), 093506 (2008)ADSCrossRefGoogle Scholar
  146. R.T. Longo, Physics of thermionic dispenser cathode aging. J. Appl. Phys. 94, 6966–6975 (2003).  https://doi.org/10.1063/1.1621728 ADSCrossRefGoogle Scholar
  147. R.T. Longo, E.A. Adler and L.R. Falce, Dispenser cathode life prediction model, in Proceedings on International Electron Devices Meeting, pp. 318–321 (1984)Google Scholar
  148. A. Lopez Ortega, I.G. Mikellides, The importance of the cathode plume and its interactions with the ion beam in numerical simulations of Hall thrusters. Phys. Plasmas 23(4), 043515 (2016)ADSCrossRefGoogle Scholar
  149. A. Loyan, M. Titov, O. Rybalov, T. Maksymenko, Middle power Hall effect thrusters with centrally located cathode, in 33rd International Electric Propulsion Conference (IEPC), 6–10 Oct 2013, Washington, DC, USA. IEPC-2013-410 (2013)Google Scholar
  150. M. Mandell, I. Katz, Theory of hollow operation in spot and plume modes, in 30th Joint Propulsion Conference and Exhibit, Joint Propulsion Conferences. American Institute of Aeronautics and Astronautics (1994a)Google Scholar
  151. M.J. Mandell, I. Katz, Theory of hollow cathode operation in spot and plume modes, in AIAA-94-3134, 30th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Indianapolis, IN, June 1994 (1994b)Google Scholar
  152. F. Marchandise, N. Cornu, F. Darnon, D. Estublier, PPS®1350-G qualification status 10500 h, in 30th International Electric Propulsion Conference (IEPC), Florence, Italy, IEPC-2007-164, Sept 2007 (2007)Google Scholar
  153. C.M. Marrese, Compatibility of field emission cathode and electric propulsion technologies, Ph.D. Thesis, University of Michigan (1999)Google Scholar
  154. C.M. Marrese et al., Performance of field emission cathodes in xenon electric propulsion system environments, in Micropropulsion for small spacecraft, Reston, VA, American Institute of Aeronautics and Astronautics, Inc., Progress in Astronautics and Aeronautics, vol. 187, pp. 271–302 (2000a)Google Scholar
  155. C.M. Marrese, J.J. Wang, A.D. Gallimore, K.D. Goodfellow, Space-charge-limited emission from field emission cathodes for electric propulsion and tether applications,” in Micropropulsion for small spacecraft, Reston, VA, American Institute of Aeronautics and Astronautics, Inc., Progress in Astronautics and Aeronautics, vol. 187, pp. 423–447 (2000b)Google Scholar
  156. R. Massarczyk et al., Paschen’s law studies in cold gases. J. Instrum. 12, P06019 (2017)CrossRefGoogle Scholar
  157. T. Matlock, D.A. Goebel, R. Conversano, R. Wirz, An investigation of low frequency plasma instabilities in a cylindrical hollow cathode discharge, in 50th AIAA Joint Propulsion Conference, Cleveland, OH, AIAA 2014-3508 (2014)Google Scholar
  158. T. Matlock, C. Dodson, D.A. Goebel, R. Wirz, Measurements of transport due to low frequency, in 30th International Electric Propulsion Conference, Hyogo-Kobe, Japan, IEPC-2015-137, 4–10 July 2015 (2015)Google Scholar
  159. S. Matsuishi et al., High-density electron anions in a nanoporous single crystal: [Ca24Al28O64]4+ (4e). Science 301(5633), 626–629 (2003)ADSCrossRefGoogle Scholar
  160. S. Mazouffre, Electric propulsion for satellites and spacecraft: established technologies and novel approaches. Plasma Sources Sci. Technol. 25(3), 033002 (2016).  https://doi.org/10.1088/0963-0252/25/3/033002 ADSCrossRefGoogle Scholar
  161. M.S. McDonald, N.R.S. Caruso, Ignition and early operating characteristics of a low-current C12A7 hollow cathode, in 35th International Electric Propulsion Conference (IEPC), 8–12 Oct 2017, Atlanta, GA, USA. IEPC-2017-253 (2017)Google Scholar
  162. M. McDonald, A.D. Gallimore, D.M. Goebel, Note: improved heater design for high-temperature hollow cathodes. Rev. Sci. Instrum. 88(2), 026104 (2017)ADSCrossRefGoogle Scholar
  163. I.G. Mikellides, Effects of viscosity in a partially ionized channel flow with thermionic emission. Phys. Plasmas 16(1), 013501 (2009)ADSCrossRefGoogle Scholar
  164. I.G. Mikellides, I. Katz, Wear mechanisms in electron sources for ion propulsion, 1: neutralizer hollow cathode. J. Propuls. Power 24(4), 855–865 (2008)CrossRefGoogle Scholar
  165. I.G. Mikellides, I. Katz, D.M. Goebel, J.E. Polk, Hollow cathode theory and experiment. II. A two-dimensional theoretical model of the emitter region. J. Appl. Phys. 98(11), 113303 (2005)ADSCrossRefGoogle Scholar
  166. I.G. Mikellides, I. Katz, D.M. Goebel, J.E. Polk, K.K. Jameson, Plasma processes inside dispenser hollow cathodes. Phys. Plasmas 13(6), 063504 (2006)ADSCrossRefGoogle Scholar
  167. I. Mikellides, I. Katz, K. Jameson, D. Goebel, Driving processes in the orifice and near-plume regions of a hollow cathode, in 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Joint Propulsion Conferences. American Institute of Aeronautics and Astronautics (2006b)Google Scholar
  168. I.G. Mikellides, I. Katz, D.M. Goebel, K.K. Jameson, Evidence of nonclassical plasma transport in hollow cathodes for electric propulsion. J. Appl. Phys. 101(6), 063301 (2007)ADSCrossRefGoogle Scholar
  169. I.G. Mikellides, I. Katz, D.A. Goebel, K.K. Jameson, J.E. Polk, Wear mechanisms in electron sources for ion propulsion, 2: discharge hollow cathode. J. Propuls. Power 24(4), 866–879 (2008)CrossRefGoogle Scholar
  170. I.G. Mikellides, D.M. Goebel, J.S. Snyder, I. Katz, D.A. Herman, The discharge plasma in ion engine neutralizers: numerical simulations and comparisons with laboratory data. J. Appl. Phys. 108(11), 113308 (2010)ADSCrossRefGoogle Scholar
  171. I.G. Mikellides, D.M. Goebel, B.A. Jorns, J.E. Polk, P. Guerrero, Numerical simulations of the partially ionized gas in a 100-A LaB6 hollow cathode. IEEE Trans. Plasma Sci. 43(1), 173–184 (2015)ADSCrossRefGoogle Scholar
  172. I.G. Mikellides, P. Guerrero, A. Lopez Ortega, D.M. Goebel, J.E. Polk, Investigations of spot-to-plume mode transition in a hollow cathode discharge using 2-D axisymmetric plasma simulations, in 54th AIAA/SAE/ASEE Joint Propulsion Conference, AIAA Propulsion and Energy Forum: American Institute of Aeronautics and Astronautics (2018a)Google Scholar
  173. I.G. Mikellides, P. Guerrero, A. Lopez Ortega, J.E. Polk, Spot-to-plume mode transition investigations in the HERMeS hollow cathode discharge using coupled 2-D axisymmetric plasma-thermal simulations, in 2018 Joint Propulsion Conference, AIAA Propulsion and Energy Forum. American Institute of Aeronautics and Astronautics (2018b)Google Scholar
  174. I.G. Mikellides, P. Guerrero, A. Lopez Ortega, J.E. Polk, Spot-to-plume mode transition investigations in the HERMeS hollow cathode discharge using coupled 2-d axisymmetric plasma-thermal simulations, in 2018 Joint Propulsion Conference, AIAA Propulsion and Energy Forum: American Institute of Aeronautics and Astronautics (2018c)Google Scholar
  175. H.C. Miller, Breakdown potential of neon below the Paschen minimum. Physica 30(11), 2059–2067 (1964).  https://doi.org/10.1016/0031-8914(64)90027-8 ADSCrossRefGoogle Scholar
  176. T. Misuri, SITAEL low power electric propulsion systems for small satellites, in IAC-18 C,4,4,10,x46774, 69th International Astronautical Congress (IAC), Bremen, Germany, 1–5 Oct 2018 (2018)Google Scholar
  177. J. Monheiser, V. Hruby, C. Freeman, W. Connolly, B. Pote, Development and testing of a low-power Hall thruster system, in Micropropulsion for Small Spacecraft, the American Institute of Aeronautics and Astronautics (2000), pp. 244–269Google Scholar
  178. D. Morse, Plasma rotation in a hollow-cathode discharge. Phys. Fluids 8, 516–521 (1965)ADSCrossRefGoogle Scholar
  179. V.M. Murashko, A.I. Koryakin, A.N. Nesterenko, S.V. Olotin, A.I. Oranskiy, A.V. Loyan, M.M. Koshelev, V.I. Bilokon, S.Y. Nesterenko, Russian Flight Hall Thrusters SPT-70 & SPT-100 after cathode change start during 20–25 ms, in 30th International Electric Propulsion Conference (IEPC), Florence, Italy, IEPC-2007-062, Sept 2007 (2007)Google Scholar
  180. J.A. Nation, L. Schachter, F.M. Mako, L.K. Len, W. Peter, T. Srinivasan-Rao, Advances in cold cathode physics and technology. Proc. IEEE 87(5), 865–889 (1999)CrossRefGoogle Scholar
  181. Z.-X. Ning, H.-G. Zhang, O.U. Lei, D.-R. Yu, The ignition erosion mechanism of heatless hollow cathode, in 35th International Electric Propulsion Conference (IEPC), 8–12 Oct 2017, Atlanta, GA, USA. IEPC-2017-70 (2017)Google Scholar
  182. Z.-X. Ning et al., 10000-Ignition-cycle investigation of a LaB6 hollow cathode for 3–5-kilowatt Hall thruster. J. Propuls. Power (2018).  https://doi.org/10.2514/1.b37192 CrossRefGoogle Scholar
  183. K. Nishiyama, H. Kuninaka, Discussion on performance history and operations of Hayabusa ion engines. Trans. Jpn. Soc. Aeronaut. Space Sci. Aerosp. Technol. Jpn. 10(ists28), Tb_1–Tb_8 (2012)Google Scholar
  184. K. Nishiyama, S. Hosoda, R. Tsukizaki, H. Kuninaka, In-flight operation of the Hayabusa2 ion engine system in the EDVEGA phase, in 51st AIAA/SAE/ASEE Joint Propulsion Conference, Orlando, FL (2015a)Google Scholar
  185. K. Nishiyama, S. Hosoda, K. Ueno, R. Tsukizaki, H. Kuninaka, Development and testing of the Hayabusa2 ion engine system, in 34th International Electric Propulsion Conference (IEPC), 6–9 July 2015, Hyogo-Kobe, Japan, IEPC-2015-333 (2015b)Google Scholar
  186. F. Nürmberger, A. Hock, M. Tajmar, Design and experimental investigation of a low-power Hall effect thruster and a low-current hollow cathode, in 51st AIAA/ASME/SAE/ASEE Joint Propulsion Conference &Amp; Exhibit, July 2015. Orlando, FL, USA. AIAA-2015-3822 (2015)Google Scholar
  187. Y. Ohkawa, A. Izawa, Y. Yamagiwa, S. Kawamoto, S.-I. Nishida, S. Kitamura, Research and development of carbon nanotube cathodes for electric propulsion. Trans. Jpn. Soc. Aeronaut. SPACE Sci. Aerosp. Technol. Jpn. 8(ists27), Pb_27–Pb_32 (2010)Google Scholar
  188. Y. Ohkawa et al., A carbon nanotube field emission cathode for electrodynamic tether systems, in 32nd International Electric Propulsion Conference, pp. 1–10 (2011)Google Scholar
  189. Y. Ohkawa, T. Okumura, Y. Horikawa, Y. Miura, S. Kawamoto, K. Inoue, Field emission cathodes for an electrodynamic tether experiment on the H-II transfer vehicle. Trans. Jpn. Soc. Aeronaut. Space Sci. Aerosp. Technol. Jpn. 16(1), 63–68 (2018)Google Scholar
  190. W. Ohmichi, H. Kuninaka, Performance degradation of a spacecraft electron cyclotron resonance neutralizer and its mitigation. J. Propuls. Power 30(5), 1368–1372 (2014)CrossRefGoogle Scholar
  191. Y. Okawa, S. Kitamura, S. Kawamoto, Y. Iseki, K. Hashimoto, E. Noda, An experimental study on carbon nanotube cathodes for electrodynamic tether propulsion. Acta Astronaut. 61(11), 989–994 (2007)ADSCrossRefGoogle Scholar
  192. A.L. Ortega, B.A. Jorns, I.G. Mikellides, Hollow cathode simulations with a first-principles model of ion-acoustic anomalous resistivity. J. Propuls. Power 34, 1–13 (2018)CrossRefGoogle Scholar
  193. Y. Oshio et al., Experimental investigation of LaB6 hollow cathode with radiative heater. Trans. Jpn. Soc. Aeronaut. Space Sci. Aerosp. Technol. Jpn. 17(2), 203–210 (2019)Google Scholar
  194. T. Ozaki et al., Development status of ion engine for air drag compensation of SLATS, in 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit (2011)Google Scholar
  195. A.E. Ozturk, E. Turkoz, A. Ozgen, M. Celik, Design and thermal analysis of the insert region heater of a lanthanum hexaboride hollow cathode, in 6th International Conference on Recent Advances in Space Technologies (RAST), pp. 607–612, 12–14 June 2013 (2013)Google Scholar
  196. L. Palacios et al., Crystal structures and in situ formation study of mayenite electrides. Inorg. Chem. 46(10), 4167–4176 (2007)CrossRefGoogle Scholar
  197. G.A. Parakhin, R.S. Pobbubniy, A.N. Nesterenko, A.P. Sinitsin, Low-current cathode with a BaO based thermoemitter. Procedia Eng. 185, 80–84 (2017)CrossRefGoogle Scholar
  198. F. Paschen, Ueber die zum Funkenübergang in Luft, Wasserstoff und Kohlensäure bei verschiedenen Drucken erforderliche Potentialdifferenz (On the potential difference required for spark initiation in air, hydrogen, and carbon dioxide at different pressures). Ann. Phys. 273(5), 69–75 (1889)CrossRefGoogle Scholar
  199. S. Patterson, A. Malik, Noise and oscillatory disturbances in the T6 ion thruster hollow cathode,” in 35th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Los Angeles, CA, AIAA-99-2577, 20–24 June 1999 (1999)Google Scholar
  200. M.J. Patterson, M.T. Domonkos, C. Carpenter, S.D. Kovaleski, Recent development activities in hollow cathode technology, in IEPC-2001-270, 27th International Electric Propulsion Conference, Oct 2001, Pasadena, California, USA (2001)Google Scholar
  201. M.J. Patterson, J.E. Foster, T.W. Haag, V.K. Rawlin, G.C. Soulas, R.F. Roman, NEXT: NASA’s evolutionary xenon thruster, in AIAA 2002-3832, 38th Joint Propulsion Conference, Indianapolis, IN, 7–10 July 2002 (2002)Google Scholar
  202. D. Pedrini, R. Albertoni, F. Paganucci, M. Andrenucci, Theoretical model of a lanthanum hexaboride hollow cathode. IEEE Trans. Plasma Sci. 43(1), 209–217 (2015)ADSCrossRefGoogle Scholar
  203. D. Pedrini et al., Experimental characterization of a lanthanum hexaboride hollow cathode for five-kilowatt-class Hall thrusters. J. Propuls. Power 32(6), 1557–1561 (2016).  https://doi.org/10.2514/1.b35828 CrossRefGoogle Scholar
  204. D. Pedrini, F. Cannelli, C. Tellini, C. Ducci, T. Misuri, F. Paganucci, M. Andrenucci, Hollow cathodes for low-power Hall effect thrusters, in 35th International Electric Propulsion Conference (IEPC), 8–12 Oct 2017, Atlanta, GA, USA. IEPC-2017-365 (2017a)Google Scholar
  205. D. Pedrini et al., Development of hollow cathodes for space electric propulsion at Sitael. Aerospace 4(2), 26 (2017).  https://doi.org/10.3390/aerospace4020026 CrossRefGoogle Scholar
  206. D. Pedrini, C. Ducci, T. Misuri, F. Paganucci, M. Andrenucci, Sitael hollow cathodes for low-power Hall effect thrusters. IEEE Trans. Plasma Sci. 46(2), 296–303 (2018)ADSCrossRefGoogle Scholar
  207. J.N. Pelton, Satellite communications overview, in Handbook of Satellite Applications, ed. by J. Pelton, S. Madry, S. Camacho-Lara (Springer, New York, NY, 2015)Google Scholar
  208. C. Philip, A study of hollow cathode discharge characteristics. AIAA J. 9(11), 2191–2196 (1971)ADSCrossRefGoogle Scholar
  209. J. Polk, J. Anderson, J. Brophy, V. Rawlin, M. Patterson, J. Sovey, J. Hamley, An overview of the results from an 8200 hour wear test of the NSTAR ion thruster, in 35th Joint Propulsion Conference and Exhibit, Joint Propulsion Conferences. American Institute of Aeronautics and Astronautics (1999)Google Scholar
  210. J. Polk, C. Marrese, L. Dang, L. Johnson, B. Thornber, Temperature distributions in hollow cathode emitters, in 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Joint Propulsion Conferences. American Institute of Aeronautics and Astronautics (2004)Google Scholar
  211. J.E. Polk, I.G. Mikellides, I. Katz, A.M. Capece, Tungsten and barium transport in the internal plasma of hollow cathodes. J. Appl. Phys. 105(11), 113301 (2009)ADSCrossRefGoogle Scholar
  212. J.E. Polk, D.M. Goebel, J.S. Snyder, A.C. Schneider, J.R. Anderson, A. Sengupta, A high power ion thruster for deep space missions. Rev. Sci. Instrum. 83, 073306 (2012)ADSCrossRefGoogle Scholar
  213. M.Y. Potapenko, V.V. Gopanchuk, Development and research of the plasma thruster with a hollow magnet anode PlaS-40, in IEPC-2013-52, 33rd International Electric Propulsion Conference, George Washington University, Washington DC, USA, 6–10 Oct 2013 (2013)Google Scholar
  214. G. Potrivitu, R. Joussot, S. Mazouffre, Anode position influence on discharge modes of a LaB6 cathode in diode configuration. Vacuum 151, 122–132 (2018).  https://doi.org/10.1016/j.vacuum.2018.02.010 ADSCrossRefGoogle Scholar
  215. B. Pots, collective Scattering of CO2-laser light from ion-acoustic turbulence. Phys. Fluids B Plasma Phys. 24(3), 517–527 (1981)ADSGoogle Scholar
  216. P.M. Puchkov, The low-current cathode for a small power electric propulsion, in EUCASS2017-138, 7th European Conference for Aeronautics and Space Sciences, 3–6 July 2017, Milan, Italy (2017a)Google Scholar
  217. P.M. Puchkov, The low-current cathode for a small power electric propulsion, in 7th European Conference for Aeronautics and Space Sciences (EUCASS). EUCASS2017-138 (2017b)Google Scholar
  218. Y. Raitses, J.K. Hendryx, N.J. Fisch, A parametric study of electron extraction from a low frequency inductively coupled RF-plasma source, in Proceedings of the 31st International Electric Propulsion Conference, Ann Arbor, MI, p. IEPC 2009-024 (2009)Google Scholar
  219. L.P. Rand, J.D. Williams, Instant start electride hollow cathode, in 33rd International Electric Propulsion Conference (IEPC), 6–10 Oct 2013, Washington DC, USA, IEPC-2013-305 (2013a)Google Scholar
  220. L.P. Rand, J.D. Williams, Effect of a low work function insert on hollow cathode temperature and operation, in 49th Joint Propulsion Conference (JPC), 14–17 July 2013. San Jose, CA, USA. AIAA-2013-4037 (2013b)Google Scholar
  221. L.P. Rand, J.D. Williams, A calcium aluminate electride hollow cathode. IEEE Trans. Plasma Sci. 43(1), 190–194 (2015)ADSCrossRefGoogle Scholar
  222. L. Rand, X. Qian, J. Williams, Ultra low work function, non-consumable insert for hollow cathodes formed from C12A7 electride, in Proceedings on 57th JANNAF Propulsion Meeting (2010)Google Scholar
  223. L.P. Rand, R.M. Waggoner, J.D. Williams, Hollow cathode with low work function electride insert, in ASME 2011 International Mechanical Engineering Congress and Exposition, Denver, Colorado, USA pp. 317–323 (2011)Google Scholar
  224. L.P. Rand, J.D. Williams, J.M. Blakely, B.E. Beal, D.L. Brown, C12A7 electride hollow cathode, in JANNAF (2013)Google Scholar
  225. V. Rashkovan, I. Ponomaryova, Optical and probe measurements of the hollow cathode plasma. J. Phys. D Appl. Phys. 38(16), 2817–2824 (2005)ADSCrossRefGoogle Scholar
  226. V.K. Rawlin, Operation of the J-series thruster using inert gas, in 16th International Electric Propulsion Conference (1982).  https://doi.org/10.2514/6.1982-1929
  227. V.K. Rawlin, W.R. Kerslake, SERT II: durability of the hollow cathode and future applications of hollow cathodes. J. Spacecr. 7(1), 14–20 (1970)CrossRefGoogle Scholar
  228. V.K. Rawlin, E. Pawlik, A mercury plasma-bridge neutralizer, in 6th Electric Propulsion and Plasmadynamics Conference, International Electric Propulsion Conference (1967).  https://doi.org/10.2514/6.1967-670
  229. V.K. Rawlin, E.V. Pawlik, A mercury plasma-bridge neutralizer. J. Spacecr. Rockets 5, 814–820 (1968).  https://doi.org/10.2514/3.29363 ADSCrossRefGoogle Scholar
  230. V.K. Rawlin, M.J. Patterson, A. Chopra, S.M. Martin, High current hollow cathodes for ion thrusters, AIAA Paper 87-1072 (1987)Google Scholar
  231. L. Rehn, H. Kaufman, Correlation of inert gas hollow cathode performance, in 13th International Electric Propulsion Conference (1978)Google Scholar
  232. R.R. Robson et al., Hughes Research Laboratories, United States Air Force. Flight Model Discharge System. Scientific Report no. 2, Feb 1986. Report (1986)Google Scholar
  233. P. Rossetti, F. Paganucci, M. Andrenucci, A hollow cathode model for application to the electric propulsion, in 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Joint Propulsion Conferences. American Institute of Aeronautics and Astronautics (2002)Google Scholar
  234. B. Rubin, J.D. Williams, Hollow cathode discharge initiation and fast starting cathode, in IEPC-2009-26, 31st International Electric Propulsion Conference, University of Michigan, Ann-Arbor, MI, USA, 20–24 Sept 2009 (2009)Google Scholar
  235. P. Saevets, D. Semenenko, R. Albertoni, G. Scremin, Development of a long-life low-power Hall thruster, in IEPC-2017-38, 35th International Electric Propulsion Conference, Georgia Institute of Technology, Atlanta, Georgia, USA, 8–12 Oct 2017 (2017)Google Scholar
  236. R.Z. Sagdeev, A. Galeev, Nonlinear Plasma Theory (W. A. Benjamin, New York, 1969)zbMATHGoogle Scholar
  237. A. Salhi, P. Turchi, A first-principles model for orificed hollow cathode operation, in 28th Joint Propulsion Conference and Exhibit, Joint Propulsion Conferences. American Institute of Aeronautics and Astronautics (1992)Google Scholar
  238. A. Salhi, P.J. Turchi, Theoretical modeling of orificed, hollow cathode discharges, in the 23rd International Electric Propulsion Conference (IEPC), Seattle, WA, September 1993. IEPC-93-024 (1993)Google Scholar
  239. T.R. Sarver-Verhey, 28,000 Hour xenon hollow cathode life test results, NASA/CR-97-206231, in International Electric Propulsion Conference (IEPC), IEPC-97-168, Nov 1997 (1997)Google Scholar
  240. G. Sary, L. Garrigues, J.P. Boeuf, Hollow cathode modeling: II. Physical analysis and parametric study. Plasma Sources Sci. Technol. 26(5), 055008 (2017a)ADSCrossRefGoogle Scholar
  241. G. Sary, L. Garrigues, J.P. Boeuf, Hollow cathode modeling: I. A coupled plasma thermal two-dimensional model. Plasma Sources Sci. Technol. 26(5), 055007 (2017b)ADSCrossRefGoogle Scholar
  242. M. Schatz, Heaterless ignition of inert gas ion thruster hollow cathodes, in 18th International Electric Propulsion Conference (IEPC), 30 Sept–2 Oct 1985, Alexandria, VA, USA (1985)Google Scholar
  243. F. Scholze, C. Eichhorn, C. Bundesmann, D. Spemann, H. Neumann, A. Bulit, D. Feilib, J. Gonzalez del Amo, Modelling of a radio frequency plasma bridge neutralizer (RFPBN). Procedia Eng. 185, 9–16 (2017)CrossRefGoogle Scholar
  244. A. Sengupta, Destructive physical analysis of hollow cathodes from the deep space 1 flight spare ion engine 30,000 hr life test, in 29th International Electric Propulsion Conference (IEPC), Princeton, NJ, USA, Oct 2005. No. IEPC-2005-026 (2005)Google Scholar
  245. A. Sengupta, J. Brophy, J. Anderson, C. Garner, B. Banks, K. Groh, An overview of the results from the 30,000 hr life test of deep space 1 flight spare ion engine, in 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Joint Propulsion Conferences. American Institute of Aeronautics and Astronautics (2004)Google Scholar
  246. D.E. Siegfried, P.J. Wilbur, A model for mercury orificed hollow cathodes: theory and experiment, in AIAA-82-1889, AIAA/JSASS/DGLR 16th International Electric Propulsion Conference, New Orleans, LA (1982)Google Scholar
  247. D.E. Siegfried, P.J. Wilbur, Phenomenological model describing orificed, hollow cathode operation. AIAA J. 21(1), 5–6 (1983)ADSCrossRefGoogle Scholar
  248. L.A. Singh, G.P. Sanborn, S.P. Turano, M.L.R. Walker, W.J. Ready, Operation of a carbon nanotube field emitter array in a Hall effect thruster plume environment. IEEE Trans. Plasma Sci. 43(1), 95–102 (2015)ADSCrossRefGoogle Scholar
  249. J.S. Snyder, R.R. Hofer, Throttled performance of the SPT-140 Hall Thruster, in 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, AIAA Propulsion and Energy Forum (AIAA 2014-3816) (2014)Google Scholar
  250. J. Snyder et al., Performance evaluation of the T6 Ion engine, in 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit (2010)Google Scholar
  251. G.C. Soulas, Hollow cathode heater development for the space station plasma contactor, in 23rd International Electric Propulsion Conference (IEPC), Sept 1993, Seattle, WA, USA. No. IEPC-93-042 (1993)Google Scholar
  252. Space Launch Services - Global Market Outlook (2017-2026), Stratistics Market Research Consulting Pvt Ltd, 2018, Space Launch Services - Global Market Outlook (2017-2026), www.researchandmarkets.com/reports/4562571/space-launch-services-global-market-outlook
  253. C.A. Spindt, A thin-film field-emission cathode. J. Appl. Phys. 39(7), 3504–3505 (1968)ADSCrossRefGoogle Scholar
  254. C.A. Spindt, C.E. Holland, A. Rosengreen, I. Brodie, Field-emitter arrays for vacuum microelectronics. IEEE Trans. Electron Devices 38(10), 2355–2363 (1991)ADSCrossRefGoogle Scholar
  255. T.H. Stix, Waves in plasmas—highlights from the past and present. Phys. Fluids B Plasma Phys. 2(8), 1729–1743 (1990)CrossRefGoogle Scholar
  256. P.V. Sushko, A.L. Shluger, K. Hayashi, M. Hirano, H. Hosono, Electron localization and a confined electron gas in nanoporous inorganic electrides. Phys. Rev. Lett. 91(12), 126401 (2003)ADSCrossRefGoogle Scholar
  257. J. Szabo et al., Performance evaluation of an iodine-vapor Hall thruster. J. Propuls. Power 28(4), 848–857 (2012)CrossRefGoogle Scholar
  258. J. Szabo, B. Pote, L. Byrne, S. Paintal, V. Hruby, R. Tedrake, G. Kolencik, C. Freeman, N. Gatsonis, Eight kilowatt Hall thruster system characterization, in IEPC-2013-317, 33rd International Electric Propulsion Conference, George Washington University, Washington, DC, USA, 6–10 Oct 2013 (2013)Google Scholar
  259. J. Szabo, R. Tedrake, G. Kolencik, B. Pote, Measurements of a krypton fed 1.5 kW Hall effect thruster with a centrally located cathode, in IEPC-2017-26, 35th International Electric Propulsion Conference, Georgia Institute of Technology, 8–12 Oct 2017 (2017)Google Scholar
  260. Z.R. Taillefer, Characterization of the near plume region of hexaboride and barium oxide hollow cathodes operating on xenon and iodine, Ph.D. Dissertation, Worcester Polytechnic Institute (2018)Google Scholar
  261. Y. Tani, R. Tsukizaki, D. Koda, K. Nishiyama, H. Kuninaka, Performance improvement of the μ10 microwave discharge ion thruster by expansion of the plasma production volume. Acta Astronaut. 157, 425–434 (2019)ADSCrossRefGoogle Scholar
  262. R. Thomas, H. Kamhawi, G. Williams, High current hollow cathode plasma plume measurements, in 33rd International Electric Propulsion Conference (IEPC), 6–10 Oct 2013, Washington, DC, USA. IEPC-2013-76 (2013)Google Scholar
  263. W. Tighe, K.-R. Chien, Hollow cathode emission and ignition characterization, in 2008 IEEE International Vacuum Electronics Conference (2008).  https://doi.org/10.1109/ivelec.2008.4556350
  264. W. Tighe et al., Performance evaluation and life test of the XIPS hollow cathode heater, in 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Oct 2005 (2005).  https://doi.org/10.2514/6.2005-4066
  265. W. Tighe et al., Performance evaluation of the XIPS 25-Cm thruster for application to NASA Discovery Missions, in 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit (2006).  https://doi.org/10.2514/6.2006-4666
  266. Y. Toda et al., Field emission of electron anions clathrated in subnanometer-sized cages in [Ca24Al28O64]4+ (4e). Adv. Mater. 16(8), 685–689 (2004)CrossRefGoogle Scholar
  267. Y. Toda et al., Intense thermal field electron emission from room-temperature stable electride. Appl. Phys. Lett. 87(25), 254103 (2005)ADSCrossRefGoogle Scholar
  268. Y. Toda et al., Work function of a room-temperature, stable electride [Ca24Al28O64]4+(e)4. Adv. Mater. 19(21), 3564–3569 (2007)CrossRefGoogle Scholar
  269. Y. Toda, Y. Kubota, M. Hirano, H. Hirayama, H. Hosono, Surface of room-temperature-stable electride [Ca24Al28O64]4+(e)4: preparation and its characterization by atomic-resolution scanning tunneling microscopy. ACS Nano 5(3), 1907–1914 (2011)CrossRefGoogle Scholar
  270. C. Torres et al., Paschen law for argon glow discharge. J. Phys: Conf. Ser. 370, 012067 (2012).  https://doi.org/10.1088/1742-6596/370/1/012067 CrossRefGoogle Scholar
  271. C.C. Tsai, M.M. Menon, P.M. Ryan, D.E. Schechter, W.L. Stirling, H.H. Haselton, Long-pulse ion source for neutral-beam applications. Rev. Sci. Instrum. 53(4), 417–423 (1982)ADSCrossRefGoogle Scholar
  272. M. Tsay, J. Frongillo, J. Zwahlen, Maturation of iodine fueled BIT-3 RF ion thruster and RF neutralizer, in 52nd AIAA/SAE/ASEE Joint Propulsion Conference, Salt Lake City, UT (2016)Google Scholar
  273. H.S. Uhm, S.J. Jung, H.S. Kim, Influence of gas temperature on electrical breakdown in cylindrical electrodes. J. Korean Phys. Soc. 42, 989–993 (2003)Google Scholar
  274. V. Vekselman et al., Characterization of a heaterless hollow cathode. J. Propuls. Power 29(2), 475–486 (2013).  https://doi.org/10.2514/1.b34628 CrossRefGoogle Scholar
  275. T. Verhey, G. Macrae, Requirements for long-life operation of inert gas hollow cathodes—preliminary results, in 21st International Electric Propulsion Conference (1990).  https://doi.org/10.2514/6.1990-2586
  276. V.V. Vorontsov et al., Development of KM-60 based orbit control propulsion subsystem for geostationary satellite. Procedia Eng. 185, 319–325 (2017)CrossRefGoogle Scholar
  277. E. Wagenaars, Plasma breakdown of low-pressure gas discharges, Thesis/Dissertation ETD (2006)Google Scholar
  278. L. Wang et al., Optimization of silicon field-emission arrays fabrication for space applications. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 22(3), 1407–1410 (2004)ADSCrossRefGoogle Scholar
  279. L. Wang et al., Investigation of fabrication uniformity and emission reliability of silicon field emitters for use in space. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 24(2), 1072–1075 (2006)ADSCrossRefGoogle Scholar
  280. H. Watanabe, T. Deguchi, C. Ota, J. Sato, S. Takeda, Y. Miura, Y. Sato, M. Ichimura, H. Takegahara, Performance evaluation of radio frequency plasma cathode for Hall effect thruster, in 34th International Electric Propulsion Conference (IEPC), 6–9 July 2015, Hyogo-Kobe, Japan, IEPC-2015-194 (2015)Google Scholar
  281. B.R. Weatherford, Development and Study of an Electron Cyclotron Resonance Waveguide Plasma Cathode for Electric Propulsion Applications (University of Michigan, Ann Arbor, MI, 2011)Google Scholar
  282. B.R. Weatherford, J.E. Foster, H. Kamhawi, Electron current extraction from a permanent magnet waveguide plasma cathode. Rev. Sci. Instrum. 82(9), 093507 (2011)ADSCrossRefGoogle Scholar
  283. M. Weinzierl, Space, the final economic frontier. J. Econ. Perspect. Spring 32(2), 173–192 (2018)CrossRefGoogle Scholar
  284. L.T. Williams, V.S. Kumsomboone, W.J. Ready, M.L.R. Walker, Lifetime and failure mechanisms of an arrayed carbon nanotube field emission cathode. IEEE Trans. Electron Devices 57(11), 3163–3168 (2010)ADSCrossRefGoogle Scholar
  285. N. Yamamoto, T. Morita, Y. Ohkawa, M. Nakano, I. Funaki, Ion thruster operation with carbon nanotube field emission cathode. J. Propuls. Power 35, 1–4 (2018)Google Scholar
  286. N. Yanes, P. Guerrero-Vela, A. Friss, J. Polk, B. A. Jorns, J. Austin, Ion acoustic turbulence and ion energy measurements in the plume of the HERMeS thruster hollow cathode, in 52nd AIAA/SAE/SEE Joint Propulsion Conference, Salt Lake City, UT, 25–27 July 2016 (2016)Google Scholar
  287. H.-G. Zhang et al., High-speed camera imaging of the ignition process in a heaterless hollow cathode. IEEE Trans. Plasma Sci. 47(2), 1487–1491 (2019).  https://doi.org/10.1109/tps.2018.2885380 ADSCrossRefGoogle Scholar
  288. J. Ziemer et al., Colloid microthruster flight performance results from space technology 7 disturbance reduction system, in IEPC-2017-578, 35th International Electric Propulsion Conference, Georgia Institute of Technology, 8–12 (2017)Google Scholar
  289. B. Zypries, Space, the public, and politics. Space Policy 41, 73–74 (2017).  https://doi.org/10.1016/j.spacepol.2017.01.005 ADSCrossRefGoogle Scholar

Copyright information

© Division of Plasma Physics, Association of Asia Pacific Physical Societies 2019

Authors and Affiliations

  1. 1.Space Propulsion Systems Dept.RafaelHaifaIsrael
  2. 2.Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaUSA
  3. 3.Sitael S.p.A.PisaItaly
  4. 4.University of MichiganAnn ArborUSA
  5. 5.U.S. Naval Research LaboratoryWashingtonUSA

Personalised recommendations