Skip to main content
Log in

Recent progress in research and development of hollow cathodes for electric propulsion

  • Topical Collection: Review Paper
  • Recent Progress in Physics of Plasma-Based Space Propulsion
  • Published:
Reviews of Modern Plasma Physics Aims and scope Submit manuscript

Abstract

Electric thrusters are finding increasing usage worldwide in spacecraft applications. Significant progress has been made in recent years in the modeling and performance of thermionic hollow cathodes used in flight thrusters, such as Hall and ion thrusters, or other types of plasma sources, such as for technological plasmas. The recent progress is surveyed in this paper through the discussion of six areas: hollow cathode modeling and simulation, low-current hollow cathodes, high-current hollow cathodes, heaterless hollow cathodes, new thermionic insert materials, and plasma oscillations. This includes descriptions of hollow cathode designs capable of < 1 A to over 300 A, advances in electron emitter and heating/starting technologies, and modeling and simulation of the plasma properties, thermal behavior and instabilities in the discharge. Advances in the understanding and technology in these areas and challenges that still need to be addressed and solved are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Adapted from McDonald et al. (2017)

Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

[From Ref. (Goebel et al. 2005b)]

Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

[Figure reproduced from Kim and Hosono (2012)]

Fig. 26

[Figures reproduced from Nation (Nation et al. 1999)]

Fig. 27

[Figure reproduced from Aplin et al. (2009)]

Fig. 28

[Figure reproduced from Kuninaka and Satori (1998)]

Fig. 29
Fig. 30
Fig. 31
Fig. 32

Similar content being viewed by others

References

  • B. Afif, Q.A. Abbas, The effect hollow cathode depth on plasma characteristics. Int. J. Sci. Res. (IJSR) 7(2), 1560–1565 (2018). https://doi.org/10.21275/art2018325

    Article  Google Scholar 

  • R. Agrawal, A. Nieto, H. Chen, M. Mora, A. Agarwal, Nanoscale damping characteristics of boron nitride nanotubes and carbon nanotubes reinforced polymer composites. ACS Appl. Mater. Interfaces. 5, 12052 (2013)

    Article  Google Scholar 

  • V.N. Akimov et al., Development of KM-5 Hall effect thruster and its flight testing onboard GEO spacecraft “Express-A4”. Prog. Propuls. Phys. 1, 411–424 (2009)

    Article  Google Scholar 

  • L. Albarede, V. Vial, A. Lazurenko, A. Bouchoule, M. Dudeck, Hollow cathode stationary and dynamical behavior: in diode regime and with a Hall thruster, ed. by A.Wilson. Proceedings of the 4th International Spacecraft Propulsion Conference (ESA SP-555). Calgari, Sardinia, Italy (2004)

  • M. Andrenucci, G. Matticari, Electric propulsion in Italy: status and perspectives, in IEPC-2003-236, 28th IEPC, March 2003, Toulouse, France (2003)

  • K.L. Aplin, C.M. Collingwood, B.J. Kent, Reliability tests of gated silicon field emitters for use in space. J. Phys. Appl. Phys. 37(14), 2009 (2004)

    Article  ADS  Google Scholar 

  • K.L. Aplin, B.J. Kent, W. Song, C. Castelli, Field emission performance of multiwalled carbon nanotubes for a low-power spacecraft neutraliser. Acta Astronaut. 64(9), 875–881 (2009)

    Article  ADS  Google Scholar 

  • K.L. Aplin et al., Use of coated silicon field emitters as neutralisers for fundamental physics space missions. Adv. Space Res. 48(7), 1265–1273 (2011)

    Article  ADS  Google Scholar 

  • N. Arcis et al., Database on EP (and EP-Related) technologies and TRL. Centre National d’Etudes Spatiales, pp. 1–73 (2015)

  • A. Arkhopov, K.N. Kozubsky, The development of the cathode compensators for stationary plasma thrusters in the USSR, in 22nd International Electric Propulsion Conference, paper IEPC-91-023, Viareggio, Italy, 14–17 Oct 1991 (1991)

  • Aspects of advanced neutralizer development for the RIT-2x family of gridded ion engines, in Space Propulsion Conference, 14–18 May 2018, Seville, Spain. SP2018_00471

  • G. Aston, Hollow cathode startup using a microplasma discharge. Rev. Sci. Instrum. 52(8), 1259–1260 (1981)

    Article  ADS  Google Scholar 

  • G. Aston (1984), FERM cathode operation on the test bed ion engine, in 17th International Electric Propulsion Conference (IEPC), Tokyo, Japan, IEPC-84-87 (1984)

  • G. Aston, W.D. Deininger, Test bed ion engine development. Report No. CR-174623. Pasadena: Jet Propulsion Laboratory (NASA JPL). Print (1984)

  • L. Balika, B. Laurent, J. Rabin, M. Diome, O. Duchemin, J.-M. Lonchard, X. Cavelan, Development of a cathode for the PPS®5000 Hall thruster unit, in IEPC-2017-416, 35th International Electric Propulsion Conference, Georgia Institute of Technology, 8–12 Oct 2017 (2017)

  • O. Baranov, K. Bazaka, H. Kersten, M. Keidar, U. Cvelbar, S. Xu, I. Levchenko, Plasma under control: advanced solutions and perspectives for plasma flux management in material treatment and nanosynthesis. Appl. Phys. Rev. 4(4), 041302 (2017). https://doi.org/10.1063/1.5007869

    Article  ADS  Google Scholar 

  • J.R. Beattie, J.N. Matossian, R.L. Poeschel, Xenon ion propulsion system. J. Propuls. 5(4), 438–444 (1989)

    Article  Google Scholar 

  • G. Becatti, D.M. Goebel, J.E. Polk, P. Guerrero, Life evaluation of a lanthanum hexaboride hollow cathode for high-power Hall thrusters. J. Propuls. Power (2018). https://doi.org/10.2514/1b36659

    Article  Google Scholar 

  • A. Behroozfar, S. Daryadel, S.R. Morsali, S. Moreno, M. Baniasadi, R.A. Bernal, M. Minary-Jolandan, Microscale 3D printing of nanotwinned copper. Adv. Mater. 30, 1705107 (2017). https://doi.org/10.1002/adma.201705107

    Article  Google Scholar 

  • G.F. Benavides, H. Kamhawi, J. Mackey, T. Haag, G. Costa, Iodine Hall-effect electric propulsion system research, development, and system durability demonstration, in 2018 Joint Propulsion Conference, p. 4422 (2018)

  • D. Bock, C. Drobny, P. Laufer, M. Kössling, M. Tajmar, Development and testing of electric propulsion systems at TU Dresden, in 52nd AIAA/SAE/ASEE Joint Propulsion Conference, American Institute of Aeronautics and Astronautics, Salt Lake City, UT, USA (2016)

  • F. Boeschoten, R. Komen, A. Sens, An investigation of the positive column of a hollow cathode arc in a magnetic field. Part I. Zeitschrift für Naturforschung A 34(8), 1009–1021 (1979)

    Article  ADS  Google Scholar 

  • S.I. Braginskii, Transport processes in a plasma, in Reviews of Plasma Physics, ed. by M.A. Leontovich (Consultants Bureau, New York, 1965), pp. 205–311

    Google Scholar 

  • J.R. Brophy, NASA’s Deep Space 1 ion Engine. Rev. Sci. Instrum. 73(2), 1071–1078 (2002)

    Article  ADS  Google Scholar 

  • J. Brophy, C. Garner, Tests of high current hollow cathodes for ion engines, in 24th AIAA Joint Propulsion Conference, AIAA-1988-2913, 10.2514/6 (1988a)

  • J. Brophy, C. Garner, Tests of high-current cathodes for ion engines, in 24th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Boston, MA, AIAA-1988-2193, July 1988 (1988b)

  • J. Brophy, C. Garner, A 5,000 hour xenon hollow cathode life test, in AIAA-91-2122, 27th AIAA Joint Propulsion Conference, Sacramento, CA, 24–26 June 1991 (1991)

  • J.R. Brophy, D.E. Brinza, J.E. Polk, M.D. Henry, A. Sengupta, The DSI hyper-extended mission, in 38th Joint Propulsion Conference, Indianapolis, Indiana, AIAA-2002-3673, 7–10 July 2002 (2002)

  • Busek Space Propulsion and Systems, Busek Hollow Cathodes (Busek Co., Inc., Natick, 2013)

    Google Scholar 

  • V.Y. Bychenkov, V.P. Silin, S.A. Uryupin, Ion-acoustic turbulence and anomalous transport. Phys. Rep. Rev. Sect. Phys. Lett. 164(3), 119–215 (1988)

    Google Scholar 

  • D.C. Byers, W.R. Kerslake, J.F. Staggs, SERT II—mission and experiments. J. Spacecr. Rockets 7(1), 4–6 (1970). https://doi.org/10.2514/3.29854

    Article  ADS  Google Scholar 

  • S. Cao, J.X. Ren, H.B. Tang, Z. Zhang, Y.B. Wang, J.B. Cao, Z.Y. Chen, Numerical simulation of plasma power deposition on hollow cathode walls using particle-in-cell and Monte Carlo collision method. Phys. Plasmas 25(10), 103512 (2018)

    Article  ADS  Google Scholar 

  • M. Capacci, M. Minucci, A. Severi, Simple numerical model describing discharge parameters in orificed hollow cathode devices, in AIAA-97-2791, 33rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Seattle, WA (1997)

  • A.M. Capece, J.E. Polk, I.G. Mikellides, J.E. Shepherd, Oxygen transport in the internal xenon plasma of a dispenser hollow cathode. J. Appl. Phys. 115(15), 153302 (2014)

    Article  ADS  Google Scholar 

  • O. Cherkun, D. Uluşen, Cesium hollow cathode with internal discharge and gas feed for electric propulsion applications, in IEPC-2017-259, 35th International Electric Propulsion Conference, Georgia Institute of Technology, 8–12 Oct 2017 (2017)

  • E.Y. Choueiri, Review: “a critical history of electric propulsion: the first 50 years (1906–1956)”. J. Propuls. Power 20(2), 193–203 (2004). https://doi.org/10.2514/1.9245

    Article  Google Scholar 

  • E. Chu, D.M. Goebel, “High current lanthanum hexaboride hollow cathode for 10 to 50 kW Hall thrusters. IEEE Trans. Plasma Sci. 20(9), 2133–2144 (2012)

    Article  ADS  Google Scholar 

  • M. Coletti, S. Gabriel, Insert temperature measurements of a 180A hollow cathode for the HiPER Project, in 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit (2012)

  • F. Crawford, S. Gabriel, Microfluidic model of a micro hollow cathode for small ion thrusters (invited), in 33rd AIAA Fluid Dynamics Conference and Exhibit, Fluid Dynamics and Co-located Conferences. American Institute of Aeronautics and Astronautics (2003)

  • G. Csiky, Investigation of a hollow cathode discharge plasma, in 7th Electric Propulsion Conference, International Electric Propulsion Conference. American Institute of Aeronautics and Astronautics (1969)

  • S. Cusson, Z. Brown, E. Dale, B.A. Jorns, A.D. Gallimore, Ion acoustic turbulence in the hollow cathode plume of a Hall effect thruster, Cincinnati, OH, in 2018 Joint Propulsion Conference, AIAA 2018-4509 (2018)

  • J. Dankanich, J.J. Szabo, B. Pote, S. R. Oleson, H. Kamhawi, Mission and system advantages of iodine Hall thrusters, in 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, p. 3905 (2014)

  • J.W. Dankanich, M. Selby, K.A. Polzin, H. Kamhawi, T. Hickman, L. Byrne, The Iodine Satellite (iSat) project development towards Critical Design Review (CDR), in 52nd AIAA/SAE/SEE Joint Propulsion Conference, Salt Lake City, UT, 25–27 July 2016. No. AIAA-2016-4540 (2016)

  • R.C. Davidson, N.A. Krall, Anomalous transport in high-temperature plasmas with applications to solenoidal fusion systems. Nucl. Fusion 17(6), 1313–1372 (1977)

    Article  ADS  Google Scholar 

  • A. Daykin-Iliopoulos, S. Gabriel, I. Golosnoy, K. Kubota, I. Funaki, Investigation of heaterless hollow cathode breakdown, in 34th International Electric Propulsion Conference (IEPC), 6–9 July 2015, Hyogo-Kobe, Japan, IEPC-2015-193 (2015)

  • A. Daykin-Iliopoulos, I. Golosnoy, S. Gabriel, Thermal profile of a lanthanum hexaboride heaterless hollow cathode, in 35th International Electric Propulsion Conference (IEPC), Atlanta, GA, USA, Oct 2017. No. IEPC-2017-291 (2017)

  • A. Daykin-Iliopoulos, S. Gabriel, I. Golosnoy, Development of a high current heaterless hollow cathode, in 6th Space Propulsion Conference (SPC), 14–18 May 2018, Seville, Spain. No. SP2018-286 (2018)

  • K.H. De Grys, B. Welander, J. Dimicco, S. Wenzel, B. Kay et al., 4.5 kW Hall thruster system qualification status, in Joint Propulsion Conference (JPC), AIAA Paper 2005-3682, July 2005 (2005)

  • K.D. Diamant, Resonant cavity plasma electron source. IEEE Trans. Plasma Sci. 37(8), 1558–1562 (2009)

    Article  ADS  Google Scholar 

  • C. Dodson, B.A. Jorns, R. Wirz, Ion acoustic wave propagation and heating in a high-current hollow cathode plume, in 35th International Electric Propulsion Conference, Atlanta, GA, IEPC-2017-398, 8–12 Oct 2017 (2017)

  • C. Dodson, D. Perez-Grande, B.A. Jorns, D.A. Goebel, R. Wirz, Ion heating measurements on the centerline of a high-current hollow cathode plume. J. Propuls. Power 34(5), 1225–1234 (2018)

    Article  Google Scholar 

  • M.T. Domonkos, Evaluation of low-current orificed hollow cathodes, Ph.D. Dissertation, The University of Michigan (1999)

  • M. Domonkos, A particle and energy balance model of the orificed hollow cathode, in 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Joint Propulsion Conferences. American Institute of Aeronautics and Astronautics (2002)

  • C. Drobny, F. Nürmberger, M. Tajmar, Development of a compact Hall thruster with a C12A7 low-power hollow cathode, in Space Propulsion Conference, p. SP2016_3124751 (2016)

  • C. Drobny, J.W. Wulfkühler, K. Wätzig, M. Tajmar, Detailed work function measurements and development of a hollow cathode using the emitter material C12A7 electride, in Space Propulsion Conference, 14–18 May 2018, Seville, Spain. SP2018_92 (2018)

  • C. Ducci, S. Oslyak, D. Dignani, R. Albertoni, M. Andrenucci, HT100D performance evaluation and endurance test results, in 33rd International Electric Propulsion Conference (IEPC), 6–10 Oct 2013, Washington, DC, USA. IEPC-2013-140 (2013)

  • C. Ducci, T. Misuri, S. Gregucci, D. Pedrini, K. Dannenmayer, Magnetically shielded HT100 experimental campaign, in 35th International Electric Propulsion Conference (IEPC), 8–12 Oct 2017, Atlanta, GA, USA. IEPC-2017-372 (2017)

  • S. Dushman, Electron emission from metals as a function of temperature. Phys. Rev. 21(6), 0623–0636 (1923)

    Article  ADS  Google Scholar 

  • H. Eichhorn et al., Paschen’s law for a hollow cathode discharge. Appl. Phys. Lett. 63(18), 2481–2483 (1993). https://doi.org/10.1063/1.110455

    Article  ADS  Google Scholar 

  • D. Fearn, S. Patterson, Journal: Spacecraft Propulsion, Third International Conference held 1013 October 2000 at Cannes, France, ed. by R.A. Harris. European Space Agency ESASP-465, p. 587 (2001)

  • D. Fearn, A. Singfield, N. Wallace, S. Gair, P. Harris, The operation of ion thruster hollow cathodes using rare gas propellants (1990)

  • E. Feizi, A.K. Ray, 12CaO·7Al2O3 ceramic: a review of the electronic and optoelectronic applications in display devices. J. Disp. Technol. 12(5), 451–459 (2016)

    Article  ADS  Google Scholar 

  • J. Foster, M.J. Patterson, Microwave ECR ion thruster development activities at NASA Glenn Research Center, in 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit (2002)

  • C. Gasdaska, P. Falkos, M. Robin, V. Hruby, N. Demmons, R. McCormick, Testing of carbon nanotube field emission cathodes, in 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. American Institute of Aeronautics and Astronautics (2004)

  • M.P. Georgin, B.A. Jorns, A.D. Gallimore, An experimental and theoretical study of hollow cathode plume mode oscillations, in 35rd International Electric Propulsion Conference, Atlanta, GA, IEPC-2017-298, October 2017 (2017)

  • M.P. Georgin, B.A. Jorns, A.D. Gallimore, Plasma instabilities in the plume of a hollow cathode, Cincinnati, OH, in 2018 Joint Propulsion Conference, AIAA-2018-4427 (2018)

  • V.A. Godyak, Y. Raitses, N.J. Fisch, RF plasma cathode-neutralizer for space application, in Proceedings of the 30th International Electric Propulsion Conference, Florence, Italy, p. IEPC 2007-266 (2007)

  • D.M. Goebel, E. Chu, High-current lanthanum hexaboride hollow cathode for high-power Hall thrusters. J. Propuls. Power 30, 35–40 (2014). https://doi.org/10.2514/1.B34870

    Article  Google Scholar 

  • D.M. Goebel, I. Katz, Fundamentals of Electric Propulsion: Ion and Hall Thrusters (Wiley, Hoboken, NJ, 2008)

    Book  Google Scholar 

  • D.M. Goebel, J.E. Polk, Lanthanum hexaboride hollow cathode for the asteroid redirect robotic mission 12.5 kW Hall thrusters, in IEPC-2015-43, 34rd International Electric Propulsion Conference, Kobe, Japan, 4–6 July 2015 (2015)

  • D.M. Goebel, J.E. Polk, Lanthanum hexaboride hollow cathode performance and wear testing for the asteroid redirect mission Hall thruster, in AIAA 2016-4835, 52nd Joint Propulsion Conference, Salt Lake City, UT, 25–27 July 2016 (2016)

  • D.M. Goebel, R. Watkins, LaB6 hollow cathodes for ion and Hall thrusters, in AIAA-2005-4239, 41st Joint Propulsion Conference, Tucson, AZ, 11–13 July 2005 (2005)

  • D.M. Goebel, R.M. Watkins, Compact lanthanum hexaboride hollow cathode. Rev. Sci. Instrum. 81, 083504 (2010)

    Article  ADS  Google Scholar 

  • D.M. Goebel, J.T. Crow, A.T. Forrester, Lanthanum hexaboride hollow cathode for dense plasma production. Rev. Sci. Instrum. 49, 469–472 (1978)

    Article  ADS  Google Scholar 

  • D.M. Goebel, K.K. Jameson, R.M. Watkins, I. Katz, I.G. Mikellides, Hollow cathode theory and experiment. I. Plasma characterization using fast miniature scanning probes. J. Appl. Phys. 98(11), 113302 (2005)

    Article  ADS  Google Scholar 

  • D.M. Goebel, K. Jameson, I. Katz, I. Mikellides, J. Polk, Energetic ion production and keeper erosion in hollow cathode discharges, in IEPC-2005-266, 29th International Electric Propulsion Conference, Princeton University, 31 Oct–4 Nov 2005 (2005b)

  • D.M. Goebel, K.K. Jameson, I. Katz, I.G. Mikellides, Potential fluctuations and energetic ion production in hollow cathode discharges. Phys. Plasmas 14(10), 103508 (2007a)

    Article  ADS  Google Scholar 

  • D.M. Goebel, R.M. Watkins, K. Jameson, LaB6 hollow cathodes for ion and Hall thrusters. J. Propuls. Power 23(3), 527–528 (2007b). https://doi.org/10.2514/1.25475

    Article  Google Scholar 

  • D.M. Goebel, K.K. Jameson, I. Katz, I.G. Mikellides, Plasma potential behavior and plume mode transitions in hollow cathode discharge, in 30th International Electric Propulsion Conference, Florence, Italy, IEPC-2007-027, September 2007 (2007c)

  • D.M. Goebel, K.K. Jameson, R.R. Hofer, Hall thruster cathode flow impacts on cathode coupling and cathode life. J. Propuls. Power 28(2), 355–363 (2012)

    Article  Google Scholar 

  • D.M. Goebel, G. Becatti, S. Reilly, K. Tilley, High current lanthanum hexaboride hollow cathode for 50-200 kW Hall thrusters, in IEPC-2017-303, 35th International Electric Propulsion Conference, Georgia Institute of Technology, 8–12 Oct 2017 (2017)

  • O.A. Gorshkov et al., The GEOSAT electrical propulsion subsystem based on the KM-45 HET. Acta Astronaut. 63(1–4), 367–378 (2008)

    Article  ADS  Google Scholar 

  • P. Guerrero, I.G. Mikellides, J.E. Polk, Hollow cathode thermal modelling and self-consistent solutions. Work function evaluation for a LaB6 cathode, in 54th AIAA/SAE/ASEE Joint Propulsion Conference, AIAA Propulsion and Energy Forum: American Institute of Aeronautics and Astronautics (2018)

  • S. Hall, NASA GRC, Private Communication (2018)

  • S.J. Hall, B.A. Jorns, A.D. Gallimore, H. Kamhawi, T.W. Haag, J.A. Mackey, J.H. Gilland, R.Y. Peterson, M.J. Baird, High-power performance of a 100-kW class nested Hall thruster, in IEPC-2017-228, 35th International Electric Propulsion Conference, Georgia Institute of Technology, 8–12 Oct 2017 (2017)

  • W.A. Hanson, Satellite internet in the mobile age. New Space 4(3), 138–152 (2016). https://doi.org/10.1089/space.2016.0019

    Article  ADS  Google Scholar 

  • K. Hara, K. Kubota, Direct kinetic simulation of ion acoustic turbulence in cathode plume, in 35th International Electric Propulsion Conference, Atlanta, Georgia, IEPC-2017-496, 8–12 Oct 2017 (2017)

  • F.G. Heymann, Breakdown in cold-cathode tubes at low pressure. Proc. Phys. Soc. Sect. B 63(1), 25–41 (1950). https://doi.org/10.1088/0370-1301/63/1/305

    Article  ADS  Google Scholar 

  • A.K. Ho, B.A. Jorns, I.G. Mikellides, D.M. Goebel, A.Lopez-Ortega, Wear test demonstration of a technique to mitigate keeper erosion in a high-current LaB6 hollow cathode, in AIAA-2016-4836, 52nd AIAA Joint Propulsion Conference, Salt Lake City, UT, 25–27 July 2016 (2016)

  • Hollow cathode plasma electron emitters for ground-based and space-based applications. Electric Propulsion Laboratory, Inc. Hollow Cathode Electron Emitters, www.electricpropulsionlaboratory.com/Emitters.htm. Accessed on 24 April 2019

  • H. Hosono, Exploring electro-active functionality of transparent oxide materials. Jpn. J. Appl. Phys. 52(9R), 090001 (2013)

    Article  ADS  Google Scholar 

  • H. Hosono, J. Kim, Y. Toda, T. Kamiya, S. Watanabe, Transparent amorphous oxide semiconductors for organic electronics: application to inverted OLEDs. Proc. Natl. Acad. Sci. 114(2), 233–238 (2017)

    Article  Google Scholar 

  • W. Huang, H. Kamhawi, T. Haag, Plasma oscillation characterization of NASA’s HERMeS Hall thruster via high speed imaging, in 52nd AIAA/SAE/ASEE Joint Propulsion Conference, Salt Lake City, UT, AIAA_2016-4829 (2016)

  • D. Ilić, Low-frequency flute instabilities of a hollow cathode arc discharge: theory and experiment. Phys. Fluids B Plasma Phys. 16(7), 1042–1053 (1973)

    Article  ADS  Google Scholar 

  • Y. Jia, N. Guo, J. Li, Y. Sun, W. Yang, T. Zhang, L. Ma, W. Meng, H. Geng, Current status of 5A Lab6 hollow cathode life tests in Lanzhou Institute of Physics, China. Int. J. Math. Comput. Phys. Electric. Comput. Eng. 9(11), 686–689 (2015)

    Google Scholar 

  • B.A. Jorns, R. Hofer, Plasma oscillations in a 6-kW magnetically shielded Hall thruster. Phys. Plasmas 21, 053512 (2014)

    Article  ADS  Google Scholar 

  • B.A. Jorns, I.G. Mikellides, D.M. Goebel, Ion acoustic turbulence in a 100-A LaB6 hollow cathode. Phys. Rev. E 90(6), 063106 (2014)

    Article  ADS  Google Scholar 

  • B.A. Jorns, I.G. Mikellides, D.A. Goebel, A. Lopez Ortega, Mitigation of energetic ions and keeper erosion in a high-current hollow cathode, in 34th International Electric Propulsion Conference, Hyogo-Kobe, Japan, IEPC-2015-134, 4–10 July 2015 (2015)

  • B.A. Jorns, C. Dodson, J. Anderson, D.A. Goebel, R. Hofer, M. Sekerak, A. Lopez Ortega, I.G. Mikellides, Mechanisms for pole piece erosion in a 6-kW magnetically-shielded Hall thruster, in 52nd AIAA/SAE/ASEE Joint Propulsion Conference, Salt Lake City, UT, AIAA-2016-4839 (2016)

  • B.A. Jorns, C. Dodson, D.A. Goebel, R. Wirz, Propagation of ion acoustic wave energy in the plume of a high-current LaB6 hollow cathode. Phys. Rev. E 96, 023208 (2017)

    Article  ADS  Google Scholar 

  • R. Joussot, L. Grimaud, S. Mazouffre, Examination of a 5 A-class cathode with a LaB6 flat disk emitter in the 2 A–20 A current range. Vacuum 146, 52–62 (2017)

    Article  ADS  Google Scholar 

  • H. Kamhawi, J. VanNoord, Development and testing of high current hollow cathodes for high power Hall thrusters, in 48th AIAA Joint Propulsion Conference & Exhibit, AIAA Paper 2012-4080 (2012)

  • H. Kamhawi, J. Foster, M. Patterson, Operation of a microwave electron cyclotron resonance cathode, in 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Fort Lauderdale, Florida (2004)

  • S. Kang, W. Choo, J. Choi, Y. Jeong, Y. Kim, S. Kang, H. Kuninaka, H. Cha, Cathode power development of Hall thruster for small satellite using microwave cathode. J. Korean Soc. Aeronaut. Space Sci. 42(11), 974–980 (2014)

    ADS  Google Scholar 

  • I. Katz, B.M. Gardner, M.J. Mandell, G.A. Jongeward, M. Patterson, R.M. Myers, Model of plasma contactor performance. J. Spacecr. Rockets 34(6), 824–828 (1997)

    Article  ADS  Google Scholar 

  • I. Katz, J.R. Anderson, J.E. Polk, J.R. Brophy, One-dimensional hollow cathode model. J. Propuls. Power 19(4), 595–600 (2003)

    Article  Google Scholar 

  • I. Katz, I.G. Mikellides, J.E. Polk, D.M. Goebel, S.E. Hornbeck, Thermal model of the hollow cathode using numerically simulated plasma fluxes. J. Propuls. Power 23(3), 522–527 (2007)

    Article  Google Scholar 

  • I. Katz, I.G. Mikellides, D.M. Goebel, J.E. Polk, Insert heating and ignition in inert-gas hollow cathodes. IEEE Trans. Plasma Sci. 36(5), 2199–2206 (2008)

    Article  ADS  Google Scholar 

  • D. Katz-Franco, D. Lev, Conceptual design of a radiative cooling system for heaterless hollow cathodes, in Proceedings of the 34th International Electric Propulsion Conference (IEPC), 4–10 July 2015, Hyogo-Kobe, Japan, IEPC-2015-164 (2015)

  • H. Kaufman, Technology of electron bombardment ion thruster, in Advances in Electronics and Electronic Physics, ed. by L. Marton (Academic Press, New York, NY, 1974), pp. 265–373

    Google Scholar 

  • W.R. Kerslake, L.R. Ignaczak, Development and flight history of SERT II spacecraft. J. Spacecr. Rockets 30(3), 258–290 (1993)

    Article  ADS  Google Scholar 

  • R. Killinger, H. Bassner, G. Kienlein, J. Mueller, Electric propulsion system RITA for ARTEMIS, in AIAA-99-2271, 35th Joint Propulsion Conference and Exhibit, Los Angeles, CA, USA (1999)

  • R. Killinger, R. Kukies, M. Surauer, A. Tomasetto, L. van Holtz, ARTEMIS orbit raising inflight experience with ion propulsion. Acta Astronaut. 53, 607–621 (2003)

    Article  ADS  Google Scholar 

  • S.W. Kim, H. Hosono, Synthesis and properties of 12CaO·7Al2O3 electride: review of single crystal and thin film growth. Philos. Mag. 92(19–21), 2596–2628 (2012)

    Article  ADS  Google Scholar 

  • S.W. Kim, Y. Toda, K. Hayashi, M. Hirano, H. Hosono, Synthesis of a room temperature stable 12CaO·7Al2O3 electride from the melt and its application as an electron field emitter. Chem. Mater. 18(7), 1938–1944 (2006)

    Article  Google Scholar 

  • S.W. Kim, S. Matsuishi, M. Miyakawa, K. Hayashi, M. Hirano, H. Hosono, Fabrication of room temperature-stable 12CaO·7Al2O3 electride: a review. J. Mater. Sci.: Mater. Electron. 18(1), 5–14 (2007)

    Google Scholar 

  • S.W. Kim, T. Shimoyama, H. Hosono, Solvated electrons in high-temperature melts and glasses of the room-temperature stable electride [Ca24Al28O64]4+·4e. Science 333(6038), 71–74 (2011)

    Article  ADS  Google Scholar 

  • N. Kishi, Management analysis for the space industry. Space Policy 39–40, 1–6 (2017). https://doi.org/10.1016/j.spacepol.2017.03.006

    Article  ADS  Google Scholar 

  • N. Koch, H.-P. Harmann, G. Kornfeld, Status of the THALES tungsten/osmium mixed-metal hollow cathode neutralizer development, in 30th International Electric Propulsion Conference (IEPC), Florence, Italy, IEPC-2007-117, Sept 2007 (2007)

  • H. Koizumi, H. Kuninaka, Performance evaluation of a miniature ion thruster μ1 with a unipolar and bipolar operation, in IEPC-2011-297, 32nd International Electric Propulsion Conference, Wiesbaden, Germany, 11–15 Sept 2011 (2011)

  • N.N. Koshelev, A.V. Loyan, Researching of self-heated hollow cathodes start erosion characteristics, in 25th Joint Propulsion Conference (JPC), 20–24 June 1999. Los Angeles, CA, USA. AIAA-99-2863 (1999)

  • N.N. Koshelev, A.V. Loyan, Investigation of hollow cathode for low power Hall effect thruster, in 30th International Electric Propulsion Conference (IEPC), 17–20 Sept 2007, Florence, Italy. IEPC-2007-103 (2007)

  • K. Kubota, Y. Oshio, H. Watanabe, S. Cho, Y. Ohkawa, I. Funaki, Hybrid-PIC simulation on plasma flow of hollow cathode. Trans. Jpn. Soc. Aeronaut. Space Sci. Aerosp. Technol. Jpn. 14(ists30), Pb_189–Pb_195 (2016)

    Google Scholar 

  • H. Kuninaka, S. Satori, Development and demonstration of a cathodeless electron cyclotron resonance ion thruster. J. Propuls. Power 14(6), 1022–1026 (1998)

    Article  Google Scholar 

  • H. Kuninaka, K. Nishiyama, I. Funaki, T. Yamada, Y. Shimizu, J. Kawaguchi, Powered flight of electron cyclotron resonance ion engines on Hayabusa explorer. J. Propuls. Power 23(3), 544–551 (2007)

    Article  Google Scholar 

  • H. Kurt et al., Note: coaxial-heater hollow cathode. Rev. Sci. Instrum. 88(6), 066103 (2017)

    Article  ADS  Google Scholar 

  • J.M. Lafferty, Boride cathodes. J. Appl. Phys. 22, 299–309 (1951)

    Article  ADS  Google Scholar 

  • O. Lane, A. Knoll, Quad confinement thruster—industrialisation & flight integration, in 34th International Electric Propulsion Conference, Hyogo-Kobe, Japan, IEPC-2015-36, 4–10 July 2015 (2015)

  • H. Lee, E. Lee, S. Choi, S. So, E.H. Kim, S. Kang, Y. Kim, Y. Jeong, A.M. Al Sayegh, M.L. Cerrón, Development of low power Hall effect propulsion system with improved system efficiency for small satellite applications, in Space Propulsion Conference, 14–18 May 2018, Seville, Spain. SP2018_181 (2018)

  • D.R. Lev, Gal Alon, Operation of a hollow cathode neutralizer for sub-100-W Hall and ion thrusters. IEEE Trans. Plasma Sci. 46(2), 311–318 (2018). https://doi.org/10.1109/tps.2017.2779409

    Article  ADS  Google Scholar 

  • D. Lev, L. Appel, Heaterless hollow cathode technology—a critical review, in 5th Space Propulsion Conference (SPC), 2–6 May 2016, Rome, Italy, SP2016_3125366 (2016)

  • D. Lev, G. Alon, D. Mykytchuk, L. Appel, Development of a low current heaterless hollow cathode for Hall thrusters, in 34th International Electric Propulsion Conference (IEPC), 6–10 July 2015, Kobe, Japan, IEPC-2015-163/ISTS-2015-b-163 (2015)

  • D. Lev, G. Alon, D. Mykytchuk, L. Appel, Heaterless hollow cathode characterization and 1,500 hr wear test, in 52nd Joint Propulsion Conference (JPC), 25–27 July 2016, Salt Lake City, UT, USA. AIAA-2016-4732 (2016)

  • D. Lev, G. Alon, L. Appel, O. Seeman, Y. Hadas, Low current heaterless hollow cathode development overview, in 35th International Electric Propulsion Conference (IEPC), 8–12 Oct 2017, Atlanta, GA, USA. IEPC-2017-244 (2017)

  • D.R. Lev et al., A 5,000-hr heaterless hollow cathode endurance test, in 2018 Joint Propulsion Conference, Aug 2018 (2018). https://doi.org/10.2514/6.2018-4426

  • D. Lev, R.M. Myers, K.M. Lemmer, J. Kolbeck, H. Koizumi, K. Polzin, The technological and commercial expansion of electric propulsion. Acta Astronaut. 159, 213–227 (2019). https://doi.org/10.1016/j.actaastro.2019.03.058

    Article  ADS  Google Scholar 

  • I. Levchenko, I.I. Beilis, M. Keidar, Nanoscaled metamaterial as an advanced heat pump and cooling media. Adv. Mater. Technol. 1(2), 1600008 (2016). https://doi.org/10.1002/admt.201600008

    Article  Google Scholar 

  • I. Levchenko, S. Xu, S. Mazouffre, M. Keidar, K. Bazaka, Mars colonization: beyond getting there. Global Chall. 2, 1800062 (2018a). https://doi.org/10.1002/gch2.201800062

    Article  Google Scholar 

  • I. Levchenko, M. Keidar, J. Cantrell, Y.L. Wu, H. Kuninaka, K. Bazaka, S. Xu, Explore space using swarms of tiny satellites. Nature 562, 185–187 (2018b). https://doi.org/10.1038/d41586-018-06957-2

    Article  ADS  Google Scholar 

  • I. Levchenko et al., Space micropropulsion systems for Cubesats and small satellites: from proximate targets to furthermost frontiers. Appl. Phys. Rev. 5, 011104 (2018c)

    Article  ADS  Google Scholar 

  • I. Levchenko, S. Xu, G. Teel, D. Mariotti, M.L. Walker, M. Keidar, Recent progress and perspectives of space electric propulsion systems based on smart nanomaterials. Nat. Commun. 9, 879 (2018d). https://doi.org/10.1038/s41467-017-02269-7

    Article  ADS  Google Scholar 

  • W.-B. Li et al., Study on electrons conduction paths in Hall thruster ignition processes with the cathode located inside and outside the magnetic separatrix. Acta Astronaut. (2018). https://doi.org/10.1016/j.actaastro.2018.11.027

    Article  Google Scholar 

  • L.M. Lidsky, S.D. Rothleder, D.J. Rose, S. Yoshikawa, C. Michelson, R.J. Mackin Jr., Highly ionized hollow cathode discharge. J. Appl. Phys. 33, 2490 (1962). https://doi.org/10.1063/1.1729002

    Article  ADS  Google Scholar 

  • V.A. Lisovskiy et al., Low-pressure gas breakdown in uniform DC electric field. J. Phys. D Appl. Phys. 33, 2722–2730 (2000)

    Article  ADS  Google Scholar 

  • B. Longmier, N. Hershkowitz, Improved operation of the nonambipolar electron source. Rev. Sci. Instrum. 79(9), 093506 (2008)

    Article  ADS  Google Scholar 

  • R.T. Longo, Physics of thermionic dispenser cathode aging. J. Appl. Phys. 94, 6966–6975 (2003). https://doi.org/10.1063/1.1621728

    Article  ADS  Google Scholar 

  • R.T. Longo, E.A. Adler and L.R. Falce, Dispenser cathode life prediction model, in Proceedings on International Electron Devices Meeting, pp. 318–321 (1984)

  • A. Lopez Ortega, I.G. Mikellides, The importance of the cathode plume and its interactions with the ion beam in numerical simulations of Hall thrusters. Phys. Plasmas 23(4), 043515 (2016)

    Article  ADS  Google Scholar 

  • A. Loyan, M. Titov, O. Rybalov, T. Maksymenko, Middle power Hall effect thrusters with centrally located cathode, in 33rd International Electric Propulsion Conference (IEPC), 6–10 Oct 2013, Washington, DC, USA. IEPC-2013-410 (2013)

  • M. Mandell, I. Katz, Theory of hollow operation in spot and plume modes, in 30th Joint Propulsion Conference and Exhibit, Joint Propulsion Conferences. American Institute of Aeronautics and Astronautics (1994a)

  • M.J. Mandell, I. Katz, Theory of hollow cathode operation in spot and plume modes, in AIAA-94-3134, 30th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Indianapolis, IN, June 1994 (1994b)

  • F. Marchandise, N. Cornu, F. Darnon, D. Estublier, PPS®1350-G qualification status 10500 h, in 30th International Electric Propulsion Conference (IEPC), Florence, Italy, IEPC-2007-164, Sept 2007 (2007)

  • C.M. Marrese, Compatibility of field emission cathode and electric propulsion technologies, Ph.D. Thesis, University of Michigan (1999)

  • C.M. Marrese et al., Performance of field emission cathodes in xenon electric propulsion system environments, in Micropropulsion for small spacecraft, Reston, VA, American Institute of Aeronautics and Astronautics, Inc., Progress in Astronautics and Aeronautics, vol. 187, pp. 271–302 (2000a)

  • C.M. Marrese, J.J. Wang, A.D. Gallimore, K.D. Goodfellow, Space-charge-limited emission from field emission cathodes for electric propulsion and tether applications,” in Micropropulsion for small spacecraft, Reston, VA, American Institute of Aeronautics and Astronautics, Inc., Progress in Astronautics and Aeronautics, vol. 187, pp. 423–447 (2000b)

  • R. Massarczyk et al., Paschen’s law studies in cold gases. J. Instrum. 12, P06019 (2017)

    Article  Google Scholar 

  • T. Matlock, D.A. Goebel, R. Conversano, R. Wirz, An investigation of low frequency plasma instabilities in a cylindrical hollow cathode discharge, in 50th AIAA Joint Propulsion Conference, Cleveland, OH, AIAA 2014-3508 (2014)

  • T. Matlock, C. Dodson, D.A. Goebel, R. Wirz, Measurements of transport due to low frequency, in 30th International Electric Propulsion Conference, Hyogo-Kobe, Japan, IEPC-2015-137, 4–10 July 2015 (2015)

  • S. Matsuishi et al., High-density electron anions in a nanoporous single crystal: [Ca24Al28O64]4+ (4e). Science 301(5633), 626–629 (2003)

    Article  ADS  Google Scholar 

  • S. Mazouffre, Electric propulsion for satellites and spacecraft: established technologies and novel approaches. Plasma Sources Sci. Technol. 25(3), 033002 (2016). https://doi.org/10.1088/0963-0252/25/3/033002

    Article  ADS  Google Scholar 

  • M.S. McDonald, N.R.S. Caruso, Ignition and early operating characteristics of a low-current C12A7 hollow cathode, in 35th International Electric Propulsion Conference (IEPC), 8–12 Oct 2017, Atlanta, GA, USA. IEPC-2017-253 (2017)

  • M. McDonald, A.D. Gallimore, D.M. Goebel, Note: improved heater design for high-temperature hollow cathodes. Rev. Sci. Instrum. 88(2), 026104 (2017)

    Article  ADS  Google Scholar 

  • I.G. Mikellides, Effects of viscosity in a partially ionized channel flow with thermionic emission. Phys. Plasmas 16(1), 013501 (2009)

    Article  ADS  Google Scholar 

  • I.G. Mikellides, I. Katz, Wear mechanisms in electron sources for ion propulsion, 1: neutralizer hollow cathode. J. Propuls. Power 24(4), 855–865 (2008)

    Article  Google Scholar 

  • I.G. Mikellides, I. Katz, D.M. Goebel, J.E. Polk, Hollow cathode theory and experiment. II. A two-dimensional theoretical model of the emitter region. J. Appl. Phys. 98(11), 113303 (2005)

    Article  ADS  Google Scholar 

  • I.G. Mikellides, I. Katz, D.M. Goebel, J.E. Polk, K.K. Jameson, Plasma processes inside dispenser hollow cathodes. Phys. Plasmas 13(6), 063504 (2006)

    Article  ADS  Google Scholar 

  • I. Mikellides, I. Katz, K. Jameson, D. Goebel, Driving processes in the orifice and near-plume regions of a hollow cathode, in 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Joint Propulsion Conferences. American Institute of Aeronautics and Astronautics (2006b)

  • I.G. Mikellides, I. Katz, D.M. Goebel, K.K. Jameson, Evidence of nonclassical plasma transport in hollow cathodes for electric propulsion. J. Appl. Phys. 101(6), 063301 (2007)

    Article  ADS  Google Scholar 

  • I.G. Mikellides, I. Katz, D.A. Goebel, K.K. Jameson, J.E. Polk, Wear mechanisms in electron sources for ion propulsion, 2: discharge hollow cathode. J. Propuls. Power 24(4), 866–879 (2008)

    Article  Google Scholar 

  • I.G. Mikellides, D.M. Goebel, J.S. Snyder, I. Katz, D.A. Herman, The discharge plasma in ion engine neutralizers: numerical simulations and comparisons with laboratory data. J. Appl. Phys. 108(11), 113308 (2010)

    Article  ADS  Google Scholar 

  • I.G. Mikellides, D.M. Goebel, B.A. Jorns, J.E. Polk, P. Guerrero, Numerical simulations of the partially ionized gas in a 100-A LaB6 hollow cathode. IEEE Trans. Plasma Sci. 43(1), 173–184 (2015)

    Article  ADS  Google Scholar 

  • I.G. Mikellides, P. Guerrero, A. Lopez Ortega, D.M. Goebel, J.E. Polk, Investigations of spot-to-plume mode transition in a hollow cathode discharge using 2-D axisymmetric plasma simulations, in 54th AIAA/SAE/ASEE Joint Propulsion Conference, AIAA Propulsion and Energy Forum: American Institute of Aeronautics and Astronautics (2018a)

  • I.G. Mikellides, P. Guerrero, A. Lopez Ortega, J.E. Polk, Spot-to-plume mode transition investigations in the HERMeS hollow cathode discharge using coupled 2-D axisymmetric plasma-thermal simulations, in 2018 Joint Propulsion Conference, AIAA Propulsion and Energy Forum. American Institute of Aeronautics and Astronautics (2018b)

  • I.G. Mikellides, P. Guerrero, A. Lopez Ortega, J.E. Polk, Spot-to-plume mode transition investigations in the HERMeS hollow cathode discharge using coupled 2-d axisymmetric plasma-thermal simulations, in 2018 Joint Propulsion Conference, AIAA Propulsion and Energy Forum: American Institute of Aeronautics and Astronautics (2018c)

  • H.C. Miller, Breakdown potential of neon below the Paschen minimum. Physica 30(11), 2059–2067 (1964). https://doi.org/10.1016/0031-8914(64)90027-8

    Article  ADS  Google Scholar 

  • T. Misuri, SITAEL low power electric propulsion systems for small satellites, in IAC-18 C,4,4,10,x46774, 69th International Astronautical Congress (IAC), Bremen, Germany, 1–5 Oct 2018 (2018)

  • J. Monheiser, V. Hruby, C. Freeman, W. Connolly, B. Pote, Development and testing of a low-power Hall thruster system, in Micropropulsion for Small Spacecraft, the American Institute of Aeronautics and Astronautics (2000), pp. 244–269

  • D. Morse, Plasma rotation in a hollow-cathode discharge. Phys. Fluids 8, 516–521 (1965)

    Article  ADS  Google Scholar 

  • V.M. Murashko, A.I. Koryakin, A.N. Nesterenko, S.V. Olotin, A.I. Oranskiy, A.V. Loyan, M.M. Koshelev, V.I. Bilokon, S.Y. Nesterenko, Russian Flight Hall Thrusters SPT-70 & SPT-100 after cathode change start during 20–25 ms, in 30th International Electric Propulsion Conference (IEPC), Florence, Italy, IEPC-2007-062, Sept 2007 (2007)

  • J.A. Nation, L. Schachter, F.M. Mako, L.K. Len, W. Peter, T. Srinivasan-Rao, Advances in cold cathode physics and technology. Proc. IEEE 87(5), 865–889 (1999)

    Article  Google Scholar 

  • Z.-X. Ning, H.-G. Zhang, O.U. Lei, D.-R. Yu, The ignition erosion mechanism of heatless hollow cathode, in 35th International Electric Propulsion Conference (IEPC), 8–12 Oct 2017, Atlanta, GA, USA. IEPC-2017-70 (2017)

  • Z.-X. Ning et al., 10000-Ignition-cycle investigation of a LaB6 hollow cathode for 3–5-kilowatt Hall thruster. J. Propuls. Power (2018). https://doi.org/10.2514/1.b37192

    Article  Google Scholar 

  • K. Nishiyama, H. Kuninaka, Discussion on performance history and operations of Hayabusa ion engines. Trans. Jpn. Soc. Aeronaut. Space Sci. Aerosp. Technol. Jpn. 10(ists28), Tb_1–Tb_8 (2012)

    Google Scholar 

  • K. Nishiyama, S. Hosoda, R. Tsukizaki, H. Kuninaka, In-flight operation of the Hayabusa2 ion engine system in the EDVEGA phase, in 51st AIAA/SAE/ASEE Joint Propulsion Conference, Orlando, FL (2015a)

  • K. Nishiyama, S. Hosoda, K. Ueno, R. Tsukizaki, H. Kuninaka, Development and testing of the Hayabusa2 ion engine system, in 34th International Electric Propulsion Conference (IEPC), 6–9 July 2015, Hyogo-Kobe, Japan, IEPC-2015-333 (2015b)

  • F. Nürmberger, A. Hock, M. Tajmar, Design and experimental investigation of a low-power Hall effect thruster and a low-current hollow cathode, in 51st AIAA/ASME/SAE/ASEE Joint Propulsion Conference &Amp; Exhibit, July 2015. Orlando, FL, USA. AIAA-2015-3822 (2015)

  • Y. Ohkawa, A. Izawa, Y. Yamagiwa, S. Kawamoto, S.-I. Nishida, S. Kitamura, Research and development of carbon nanotube cathodes for electric propulsion. Trans. Jpn. Soc. Aeronaut. SPACE Sci. Aerosp. Technol. Jpn. 8(ists27), Pb_27–Pb_32 (2010)

    Google Scholar 

  • Y. Ohkawa et al., A carbon nanotube field emission cathode for electrodynamic tether systems, in 32nd International Electric Propulsion Conference, pp. 1–10 (2011)

  • Y. Ohkawa, T. Okumura, Y. Horikawa, Y. Miura, S. Kawamoto, K. Inoue, Field emission cathodes for an electrodynamic tether experiment on the H-II transfer vehicle. Trans. Jpn. Soc. Aeronaut. Space Sci. Aerosp. Technol. Jpn. 16(1), 63–68 (2018)

    Google Scholar 

  • W. Ohmichi, H. Kuninaka, Performance degradation of a spacecraft electron cyclotron resonance neutralizer and its mitigation. J. Propuls. Power 30(5), 1368–1372 (2014)

    Article  Google Scholar 

  • Y. Okawa, S. Kitamura, S. Kawamoto, Y. Iseki, K. Hashimoto, E. Noda, An experimental study on carbon nanotube cathodes for electrodynamic tether propulsion. Acta Astronaut. 61(11), 989–994 (2007)

    Article  ADS  Google Scholar 

  • A.L. Ortega, B.A. Jorns, I.G. Mikellides, Hollow cathode simulations with a first-principles model of ion-acoustic anomalous resistivity. J. Propuls. Power 34, 1–13 (2018)

    Article  Google Scholar 

  • Y. Oshio et al., Experimental investigation of LaB6 hollow cathode with radiative heater. Trans. Jpn. Soc. Aeronaut. Space Sci. Aerosp. Technol. Jpn. 17(2), 203–210 (2019)

    Google Scholar 

  • T. Ozaki et al., Development status of ion engine for air drag compensation of SLATS, in 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit (2011)

  • A.E. Ozturk, E. Turkoz, A. Ozgen, M. Celik, Design and thermal analysis of the insert region heater of a lanthanum hexaboride hollow cathode, in 6th International Conference on Recent Advances in Space Technologies (RAST), pp. 607–612, 12–14 June 2013 (2013)

  • L. Palacios et al., Crystal structures and in situ formation study of mayenite electrides. Inorg. Chem. 46(10), 4167–4176 (2007)

    Article  Google Scholar 

  • G.A. Parakhin, R.S. Pobbubniy, A.N. Nesterenko, A.P. Sinitsin, Low-current cathode with a BaO based thermoemitter. Procedia Eng. 185, 80–84 (2017)

    Article  Google Scholar 

  • F. Paschen, Ueber die zum Funkenübergang in Luft, Wasserstoff und Kohlensäure bei verschiedenen Drucken erforderliche Potentialdifferenz (On the potential difference required for spark initiation in air, hydrogen, and carbon dioxide at different pressures). Ann. Phys. 273(5), 69–75 (1889)

    Article  Google Scholar 

  • S. Patterson, A. Malik, Noise and oscillatory disturbances in the T6 ion thruster hollow cathode,” in 35th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Los Angeles, CA, AIAA-99-2577, 20–24 June 1999 (1999)

  • M.J. Patterson, M.T. Domonkos, C. Carpenter, S.D. Kovaleski, Recent development activities in hollow cathode technology, in IEPC-2001-270, 27th International Electric Propulsion Conference, Oct 2001, Pasadena, California, USA (2001)

  • M.J. Patterson, J.E. Foster, T.W. Haag, V.K. Rawlin, G.C. Soulas, R.F. Roman, NEXT: NASA’s evolutionary xenon thruster, in AIAA 2002-3832, 38th Joint Propulsion Conference, Indianapolis, IN, 7–10 July 2002 (2002)

  • D. Pedrini, R. Albertoni, F. Paganucci, M. Andrenucci, Theoretical model of a lanthanum hexaboride hollow cathode. IEEE Trans. Plasma Sci. 43(1), 209–217 (2015)

    Article  ADS  Google Scholar 

  • D. Pedrini et al., Experimental characterization of a lanthanum hexaboride hollow cathode for five-kilowatt-class Hall thrusters. J. Propuls. Power 32(6), 1557–1561 (2016). https://doi.org/10.2514/1.b35828

    Article  Google Scholar 

  • D. Pedrini, F. Cannelli, C. Tellini, C. Ducci, T. Misuri, F. Paganucci, M. Andrenucci, Hollow cathodes for low-power Hall effect thrusters, in 35th International Electric Propulsion Conference (IEPC), 8–12 Oct 2017, Atlanta, GA, USA. IEPC-2017-365 (2017a)

  • D. Pedrini et al., Development of hollow cathodes for space electric propulsion at Sitael. Aerospace 4(2), 26 (2017). https://doi.org/10.3390/aerospace4020026

    Article  Google Scholar 

  • D. Pedrini, C. Ducci, T. Misuri, F. Paganucci, M. Andrenucci, Sitael hollow cathodes for low-power Hall effect thrusters. IEEE Trans. Plasma Sci. 46(2), 296–303 (2018)

    Article  ADS  Google Scholar 

  • J.N. Pelton, Satellite communications overview, in Handbook of Satellite Applications, ed. by J. Pelton, S. Madry, S. Camacho-Lara (Springer, New York, NY, 2015)

    Google Scholar 

  • C. Philip, A study of hollow cathode discharge characteristics. AIAA J. 9(11), 2191–2196 (1971)

    Article  ADS  Google Scholar 

  • J. Polk, J. Anderson, J. Brophy, V. Rawlin, M. Patterson, J. Sovey, J. Hamley, An overview of the results from an 8200 hour wear test of the NSTAR ion thruster, in 35th Joint Propulsion Conference and Exhibit, Joint Propulsion Conferences. American Institute of Aeronautics and Astronautics (1999)

  • J. Polk, C. Marrese, L. Dang, L. Johnson, B. Thornber, Temperature distributions in hollow cathode emitters, in 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Joint Propulsion Conferences. American Institute of Aeronautics and Astronautics (2004)

  • J.E. Polk, I.G. Mikellides, I. Katz, A.M. Capece, Tungsten and barium transport in the internal plasma of hollow cathodes. J. Appl. Phys. 105(11), 113301 (2009)

    Article  ADS  Google Scholar 

  • J.E. Polk, D.M. Goebel, J.S. Snyder, A.C. Schneider, J.R. Anderson, A. Sengupta, A high power ion thruster for deep space missions. Rev. Sci. Instrum. 83, 073306 (2012)

    Article  ADS  Google Scholar 

  • M.Y. Potapenko, V.V. Gopanchuk, Development and research of the plasma thruster with a hollow magnet anode PlaS-40, in IEPC-2013-52, 33rd International Electric Propulsion Conference, George Washington University, Washington DC, USA, 6–10 Oct 2013 (2013)

  • G. Potrivitu, R. Joussot, S. Mazouffre, Anode position influence on discharge modes of a LaB6 cathode in diode configuration. Vacuum 151, 122–132 (2018). https://doi.org/10.1016/j.vacuum.2018.02.010

    Article  ADS  Google Scholar 

  • B. Pots, collective Scattering of CO2-laser light from ion-acoustic turbulence. Phys. Fluids B Plasma Phys. 24(3), 517–527 (1981)

    Article  ADS  Google Scholar 

  • P.M. Puchkov, The low-current cathode for a small power electric propulsion, in EUCASS2017-138, 7th European Conference for Aeronautics and Space Sciences, 3–6 July 2017, Milan, Italy (2017a)

  • P.M. Puchkov, The low-current cathode for a small power electric propulsion, in 7th European Conference for Aeronautics and Space Sciences (EUCASS). EUCASS2017-138 (2017b)

  • Y. Raitses, J.K. Hendryx, N.J. Fisch, A parametric study of electron extraction from a low frequency inductively coupled RF-plasma source, in Proceedings of the 31st International Electric Propulsion Conference, Ann Arbor, MI, p. IEPC 2009-024 (2009)

  • L.P. Rand, J.D. Williams, Instant start electride hollow cathode, in 33rd International Electric Propulsion Conference (IEPC), 6–10 Oct 2013, Washington DC, USA, IEPC-2013-305 (2013a)

  • L.P. Rand, J.D. Williams, Effect of a low work function insert on hollow cathode temperature and operation, in 49th Joint Propulsion Conference (JPC), 14–17 July 2013. San Jose, CA, USA. AIAA-2013-4037 (2013b)

  • L.P. Rand, J.D. Williams, A calcium aluminate electride hollow cathode. IEEE Trans. Plasma Sci. 43(1), 190–194 (2015)

    Article  ADS  Google Scholar 

  • L. Rand, X. Qian, J. Williams, Ultra low work function, non-consumable insert for hollow cathodes formed from C12A7 electride, in Proceedings on 57th JANNAF Propulsion Meeting (2010)

  • L.P. Rand, R.M. Waggoner, J.D. Williams, Hollow cathode with low work function electride insert, in ASME 2011 International Mechanical Engineering Congress and Exposition, Denver, Colorado, USA pp. 317–323 (2011)

  • L.P. Rand, J.D. Williams, J.M. Blakely, B.E. Beal, D.L. Brown, C12A7 electride hollow cathode, in JANNAF (2013)

  • V. Rashkovan, I. Ponomaryova, Optical and probe measurements of the hollow cathode plasma. J. Phys. D Appl. Phys. 38(16), 2817–2824 (2005)

    Article  ADS  Google Scholar 

  • V.K. Rawlin, Operation of the J-series thruster using inert gas, in 16th International Electric Propulsion Conference (1982). https://doi.org/10.2514/6.1982-1929

  • V.K. Rawlin, W.R. Kerslake, SERT II: durability of the hollow cathode and future applications of hollow cathodes. J. Spacecr. 7(1), 14–20 (1970)

    Article  Google Scholar 

  • V.K. Rawlin, E. Pawlik, A mercury plasma-bridge neutralizer, in 6th Electric Propulsion and Plasmadynamics Conference, International Electric Propulsion Conference (1967). https://doi.org/10.2514/6.1967-670

  • V.K. Rawlin, E.V. Pawlik, A mercury plasma-bridge neutralizer. J. Spacecr. Rockets 5, 814–820 (1968). https://doi.org/10.2514/3.29363

    Article  ADS  Google Scholar 

  • V.K. Rawlin, M.J. Patterson, A. Chopra, S.M. Martin, High current hollow cathodes for ion thrusters, AIAA Paper 87-1072 (1987)

  • L. Rehn, H. Kaufman, Correlation of inert gas hollow cathode performance, in 13th International Electric Propulsion Conference (1978)

  • R.R. Robson et al., Hughes Research Laboratories, United States Air Force. Flight Model Discharge System. Scientific Report no. 2, Feb 1986. Report (1986)

  • P. Rossetti, F. Paganucci, M. Andrenucci, A hollow cathode model for application to the electric propulsion, in 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Joint Propulsion Conferences. American Institute of Aeronautics and Astronautics (2002)

  • B. Rubin, J.D. Williams, Hollow cathode discharge initiation and fast starting cathode, in IEPC-2009-26, 31st International Electric Propulsion Conference, University of Michigan, Ann-Arbor, MI, USA, 20–24 Sept 2009 (2009)

  • P. Saevets, D. Semenenko, R. Albertoni, G. Scremin, Development of a long-life low-power Hall thruster, in IEPC-2017-38, 35th International Electric Propulsion Conference, Georgia Institute of Technology, Atlanta, Georgia, USA, 8–12 Oct 2017 (2017)

  • R.Z. Sagdeev, A. Galeev, Nonlinear Plasma Theory (W. A. Benjamin, New York, 1969)

    MATH  Google Scholar 

  • A. Salhi, P. Turchi, A first-principles model for orificed hollow cathode operation, in 28th Joint Propulsion Conference and Exhibit, Joint Propulsion Conferences. American Institute of Aeronautics and Astronautics (1992)

  • A. Salhi, P.J. Turchi, Theoretical modeling of orificed, hollow cathode discharges, in the 23rd International Electric Propulsion Conference (IEPC), Seattle, WA, September 1993. IEPC-93-024 (1993)

  • T.R. Sarver-Verhey, 28,000 Hour xenon hollow cathode life test results, NASA/CR-97-206231, in International Electric Propulsion Conference (IEPC), IEPC-97-168, Nov 1997 (1997)

  • G. Sary, L. Garrigues, J.P. Boeuf, Hollow cathode modeling: II. Physical analysis and parametric study. Plasma Sources Sci. Technol. 26(5), 055008 (2017a)

    Article  ADS  Google Scholar 

  • G. Sary, L. Garrigues, J.P. Boeuf, Hollow cathode modeling: I. A coupled plasma thermal two-dimensional model. Plasma Sources Sci. Technol. 26(5), 055007 (2017b)

    Article  ADS  Google Scholar 

  • M. Schatz, Heaterless ignition of inert gas ion thruster hollow cathodes, in 18th International Electric Propulsion Conference (IEPC), 30 Sept–2 Oct 1985, Alexandria, VA, USA (1985)

  • F. Scholze, C. Eichhorn, C. Bundesmann, D. Spemann, H. Neumann, A. Bulit, D. Feilib, J. Gonzalez del Amo, Modelling of a radio frequency plasma bridge neutralizer (RFPBN). Procedia Eng. 185, 9–16 (2017)

    Article  Google Scholar 

  • A. Sengupta, Destructive physical analysis of hollow cathodes from the deep space 1 flight spare ion engine 30,000 hr life test, in 29th International Electric Propulsion Conference (IEPC), Princeton, NJ, USA, Oct 2005. No. IEPC-2005-026 (2005)

  • A. Sengupta, J. Brophy, J. Anderson, C. Garner, B. Banks, K. Groh, An overview of the results from the 30,000 hr life test of deep space 1 flight spare ion engine, in 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Joint Propulsion Conferences. American Institute of Aeronautics and Astronautics (2004)

  • D.E. Siegfried, P.J. Wilbur, A model for mercury orificed hollow cathodes: theory and experiment, in AIAA-82-1889, AIAA/JSASS/DGLR 16th International Electric Propulsion Conference, New Orleans, LA (1982)

  • D.E. Siegfried, P.J. Wilbur, Phenomenological model describing orificed, hollow cathode operation. AIAA J. 21(1), 5–6 (1983)

    Article  ADS  Google Scholar 

  • L.A. Singh, G.P. Sanborn, S.P. Turano, M.L.R. Walker, W.J. Ready, Operation of a carbon nanotube field emitter array in a Hall effect thruster plume environment. IEEE Trans. Plasma Sci. 43(1), 95–102 (2015)

    Article  ADS  Google Scholar 

  • J.S. Snyder, R.R. Hofer, Throttled performance of the SPT-140 Hall Thruster, in 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, AIAA Propulsion and Energy Forum (AIAA 2014-3816) (2014)

  • J. Snyder et al., Performance evaluation of the T6 Ion engine, in 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit (2010)

  • G.C. Soulas, Hollow cathode heater development for the space station plasma contactor, in 23rd International Electric Propulsion Conference (IEPC), Sept 1993, Seattle, WA, USA. No. IEPC-93-042 (1993)

  • Space Launch Services - Global Market Outlook (2017-2026), Stratistics Market Research Consulting Pvt Ltd, 2018, Space Launch Services - Global Market Outlook (2017-2026), www.researchandmarkets.com/reports/4562571/space-launch-services-global-market-outlook

  • C.A. Spindt, A thin-film field-emission cathode. J. Appl. Phys. 39(7), 3504–3505 (1968)

    Article  ADS  Google Scholar 

  • C.A. Spindt, C.E. Holland, A. Rosengreen, I. Brodie, Field-emitter arrays for vacuum microelectronics. IEEE Trans. Electron Devices 38(10), 2355–2363 (1991)

    Article  ADS  Google Scholar 

  • T.H. Stix, Waves in plasmas—highlights from the past and present. Phys. Fluids B Plasma Phys. 2(8), 1729–1743 (1990)

    Article  Google Scholar 

  • P.V. Sushko, A.L. Shluger, K. Hayashi, M. Hirano, H. Hosono, Electron localization and a confined electron gas in nanoporous inorganic electrides. Phys. Rev. Lett. 91(12), 126401 (2003)

    Article  ADS  Google Scholar 

  • J. Szabo et al., Performance evaluation of an iodine-vapor Hall thruster. J. Propuls. Power 28(4), 848–857 (2012)

    Article  Google Scholar 

  • J. Szabo, B. Pote, L. Byrne, S. Paintal, V. Hruby, R. Tedrake, G. Kolencik, C. Freeman, N. Gatsonis, Eight kilowatt Hall thruster system characterization, in IEPC-2013-317, 33rd International Electric Propulsion Conference, George Washington University, Washington, DC, USA, 6–10 Oct 2013 (2013)

  • J. Szabo, R. Tedrake, G. Kolencik, B. Pote, Measurements of a krypton fed 1.5 kW Hall effect thruster with a centrally located cathode, in IEPC-2017-26, 35th International Electric Propulsion Conference, Georgia Institute of Technology, 8–12 Oct 2017 (2017)

  • Z.R. Taillefer, Characterization of the near plume region of hexaboride and barium oxide hollow cathodes operating on xenon and iodine, Ph.D. Dissertation, Worcester Polytechnic Institute (2018)

  • Y. Tani, R. Tsukizaki, D. Koda, K. Nishiyama, H. Kuninaka, Performance improvement of the μ10 microwave discharge ion thruster by expansion of the plasma production volume. Acta Astronaut. 157, 425–434 (2019)

    Article  ADS  Google Scholar 

  • R. Thomas, H. Kamhawi, G. Williams, High current hollow cathode plasma plume measurements, in 33rd International Electric Propulsion Conference (IEPC), 6–10 Oct 2013, Washington, DC, USA. IEPC-2013-76 (2013)

  • W. Tighe, K.-R. Chien, Hollow cathode emission and ignition characterization, in 2008 IEEE International Vacuum Electronics Conference (2008). https://doi.org/10.1109/ivelec.2008.4556350

  • W. Tighe et al., Performance evaluation and life test of the XIPS hollow cathode heater, in 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Oct 2005 (2005). https://doi.org/10.2514/6.2005-4066

  • W. Tighe et al., Performance evaluation of the XIPS 25-Cm thruster for application to NASA Discovery Missions, in 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit (2006). https://doi.org/10.2514/6.2006-4666

  • Y. Toda et al., Field emission of electron anions clathrated in subnanometer-sized cages in [Ca24Al28O64]4+ (4e). Adv. Mater. 16(8), 685–689 (2004)

    Article  Google Scholar 

  • Y. Toda et al., Intense thermal field electron emission from room-temperature stable electride. Appl. Phys. Lett. 87(25), 254103 (2005)

    Article  ADS  Google Scholar 

  • Y. Toda et al., Work function of a room-temperature, stable electride [Ca24Al28O64]4+(e)4. Adv. Mater. 19(21), 3564–3569 (2007)

    Article  Google Scholar 

  • Y. Toda, Y. Kubota, M. Hirano, H. Hirayama, H. Hosono, Surface of room-temperature-stable electride [Ca24Al28O64]4+(e)4: preparation and its characterization by atomic-resolution scanning tunneling microscopy. ACS Nano 5(3), 1907–1914 (2011)

    Article  Google Scholar 

  • C. Torres et al., Paschen law for argon glow discharge. J. Phys: Conf. Ser. 370, 012067 (2012). https://doi.org/10.1088/1742-6596/370/1/012067

    Article  Google Scholar 

  • C.C. Tsai, M.M. Menon, P.M. Ryan, D.E. Schechter, W.L. Stirling, H.H. Haselton, Long-pulse ion source for neutral-beam applications. Rev. Sci. Instrum. 53(4), 417–423 (1982)

    Article  ADS  Google Scholar 

  • M. Tsay, J. Frongillo, J. Zwahlen, Maturation of iodine fueled BIT-3 RF ion thruster and RF neutralizer, in 52nd AIAA/SAE/ASEE Joint Propulsion Conference, Salt Lake City, UT (2016)

  • H.S. Uhm, S.J. Jung, H.S. Kim, Influence of gas temperature on electrical breakdown in cylindrical electrodes. J. Korean Phys. Soc. 42, 989–993 (2003)

    Google Scholar 

  • V. Vekselman et al., Characterization of a heaterless hollow cathode. J. Propuls. Power 29(2), 475–486 (2013). https://doi.org/10.2514/1.b34628

    Article  Google Scholar 

  • T. Verhey, G. Macrae, Requirements for long-life operation of inert gas hollow cathodes—preliminary results, in 21st International Electric Propulsion Conference (1990). https://doi.org/10.2514/6.1990-2586

  • V.V. Vorontsov et al., Development of KM-60 based orbit control propulsion subsystem for geostationary satellite. Procedia Eng. 185, 319–325 (2017)

    Article  Google Scholar 

  • E. Wagenaars, Plasma breakdown of low-pressure gas discharges, Thesis/Dissertation ETD (2006)

  • L. Wang et al., Optimization of silicon field-emission arrays fabrication for space applications. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 22(3), 1407–1410 (2004)

    Article  ADS  Google Scholar 

  • L. Wang et al., Investigation of fabrication uniformity and emission reliability of silicon field emitters for use in space. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 24(2), 1072–1075 (2006)

    Article  ADS  Google Scholar 

  • H. Watanabe, T. Deguchi, C. Ota, J. Sato, S. Takeda, Y. Miura, Y. Sato, M. Ichimura, H. Takegahara, Performance evaluation of radio frequency plasma cathode for Hall effect thruster, in 34th International Electric Propulsion Conference (IEPC), 6–9 July 2015, Hyogo-Kobe, Japan, IEPC-2015-194 (2015)

  • B.R. Weatherford, Development and Study of an Electron Cyclotron Resonance Waveguide Plasma Cathode for Electric Propulsion Applications (University of Michigan, Ann Arbor, MI, 2011)

    Google Scholar 

  • B.R. Weatherford, J.E. Foster, H. Kamhawi, Electron current extraction from a permanent magnet waveguide plasma cathode. Rev. Sci. Instrum. 82(9), 093507 (2011)

    Article  ADS  Google Scholar 

  • M. Weinzierl, Space, the final economic frontier. J. Econ. Perspect. Spring 32(2), 173–192 (2018)

    Article  Google Scholar 

  • L.T. Williams, V.S. Kumsomboone, W.J. Ready, M.L.R. Walker, Lifetime and failure mechanisms of an arrayed carbon nanotube field emission cathode. IEEE Trans. Electron Devices 57(11), 3163–3168 (2010)

    Article  ADS  Google Scholar 

  • N. Yamamoto, T. Morita, Y. Ohkawa, M. Nakano, I. Funaki, Ion thruster operation with carbon nanotube field emission cathode. J. Propuls. Power 35, 1–4 (2018)

    Google Scholar 

  • N. Yanes, P. Guerrero-Vela, A. Friss, J. Polk, B. A. Jorns, J. Austin, Ion acoustic turbulence and ion energy measurements in the plume of the HERMeS thruster hollow cathode, in 52nd AIAA/SAE/SEE Joint Propulsion Conference, Salt Lake City, UT, 25–27 July 2016 (2016)

  • H.-G. Zhang et al., High-speed camera imaging of the ignition process in a heaterless hollow cathode. IEEE Trans. Plasma Sci. 47(2), 1487–1491 (2019). https://doi.org/10.1109/tps.2018.2885380

    Article  ADS  Google Scholar 

  • J. Ziemer et al., Colloid microthruster flight performance results from space technology 7 disturbance reduction system, in IEPC-2017-578, 35th International Electric Propulsion Conference, Georgia Institute of Technology, 8–12 (2017)

  • B. Zypries, Space, the public, and politics. Space Policy 41, 73–74 (2017). https://doi.org/10.1016/j.spacepol.2017.01.005

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan R. Lev.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Annex: List of hollow cathodes

Annex: List of hollow cathodes

Cathode name

Designer

Id (A)

Flow (sccm)

Emitter type

Heater

Dev Status

Country

Comments

References

ISS Contactor

NASA GRC

0–12

4–6

BaO–W

Heater

(Swaged Ta–MgO)

FM

USA

Space Station Contactor cathode

Sarver-Verhey (1997)

NSTAR Discharge

NASA GRC

4.3–13.1

2.4–3.6

BaO–W

Heater

(Swaged Ta–MgO)

FM

USA

Flight ion thruster cathode

Brophy (2002)

NSTAR Neutralizer

NASA GRC

0.5–1.76

2.5–3.7

BaO–W

Heater

(Swaged Ta–MgO)

FM

USA

Flight ion thruster cathode

Brophy (2002)

XIPS 13 cm Discharge

Hughes

4

1.2

BaO–W

Heater

(Swaged Ta–MgO)

FM

USA

Flight ion thruster cathode

Beattie et al. (1989)

XIPS 13 cm Neutralizer

Hughes

0.5

0.6

BaO–W

Heater

(Swaged Ta–MgO)

FM

USA

Flight ion thruster cathode

Beattie et al. (1989)

XIPS 25 cm Discharge

Hughes

4–24

1.5–3

BaO–W

Heater

(Swaged Ta–MgO)

FM

USA

Flight ion thruster cathode

Tighe et al. (2006)

XIPS 25 cm Neutralizer

Hughes

1.5–3

1.6–3.2

BaO–W

Heater

(Swaged Ta–MgO)

FM

USA

Flight ion thruster cathode

Tighe et al. (2006)

BPT-4000

Aerojet

5–15

4–10.2

Ba/Scandate

Heater

(Swaged Ta–MgO)

FM

USA

4.5 kW Hall thruster cathode

De Grys et al. (2005)

NEXIS Discharge

JPL

4–30

6.5

BaO–W

Heater

(Swaged Ta–MgO)

DM

USA

25 kW ion thruster cathode

Polk et al. (2012)

NEXIS Neutralizer

JPL

0.5–5

4

BaO–W

Heater

(Swaged Ta–MgO)

LM

USA

25 kW ion thruster cathode

Polk et al. (2012)

Brophy 1991

JPL

25

4

BaO–W

Heater

(Swaged Ta–MgO)

LM

USA

5000 h life test cathode

Brophy and Garner (1991)

Brophy 1988

JPL

100

9–18

BaO–W

Heater

(Swaged Ta–MgO)

LM

USA

1000 h life test cathode (Ar)

Brophy and Garner (1988a)

HERMeS 1

NASA GRC

8–31.5

10–21.7

BaO–W

Heater

(Swaged Ta–MgO)

LM

USA

12.5 kW Hall thruster cathode

Kamhawi and VanNoord (2012)

HERMeS 2

JPL

8–31.4

10–21.7

LaB6

Heater

(Swaged Ta–Al2O3)

DM

USA

12.5 kW Hall thruster cathode

Goebel and Polk (2016)

H6

JPL

2–60

3–21

LaB6

Heater

(Swaged Ta–Al2O3)

LM

USA

6 kW Hall thruster cathode

Goebel and Watkins (2010)

H9

UoM

5–60

5–20

LaB6

Heater

(Swaged Ta–Al2O3)

LM

USA

9 kW Hall thruster cathode

Goebel and Watkins (2010)

1/2″ LaB6 Gen1

JPL

10–100

5–15

LaB6

Heater

(Swaged Ta–Al2O3)

LM

USA

Hermes prototype cathode

Goebel and Polk (2015)

1/2″ LaB6 Gen2

JPL

10–200

5–20

LaB6

Heater

(Swaged Ta–Al2O3)

LM

USA

Development model cathode

Chu and Goebel (2012)

X3 Gen1

JPL

5–250

10–20

LaB6

Heater

(Swaged Ta–Al2O3)

LM

USA

100 kW Hall thruster cathode

Goebel and Chu (2014)

Xe Gen3

JPL

10–300

10–20

LaB6

Heater

(Swaged Ta–Al2O3)

DM

USA

100 kW Hall thruster cathode

Goebel et al. (2017)

NEXT Discharge

NASA GRC

8–20

3.5–4.9

BaO–W

Heater

(Swaged Ta–MgO)

DM

USA

Ion thruster cathode

Patterson et al. (2002)

NEXT Neutralizer

NASA GRC

1–3.6

4

BaO–W

Heater

(Swaged Ta–MgO)

DM

USA

Ion thruster cathode

Patterson et al. (2002)

BHC-1500

Busek

0–3

1

BaO–W

Heater

FM

USA

BHT-200 Hall thruster

Busek Space Propulsion and Systems (2013)

BHC-2500

Busek

≤ 25

2.5–6

BaO–W

Heater

EM

USA

BHT-1500 Hall thruster cathode

Szabo et al. (2017)

BHC-5000

Busek

≤ 70

6–15

BaO–W

Heater

EM

USA

BHT-8000 Hall thruster cathode

Szabo et al. (2013)

60-A Hollow Cathode

UoM and JPL

10–60

10–30

LaB6

Heater

LM

USA

For H9 9-kW magnetically shielded thruster and 2-channel magnetically shielded nested Hall thruster

By Author

CSU Fast Starting Cathode

Colorado State University

1–5

6–10

BaO–W

Heater

DM

USA

 

Rubin and Williams (2009)

HEPS-350 Cathode

HeatWave

1–10

2–10

BaO–W

Heater

FM

USA

Operated with Deimos-2 satellite

Lee et al. (2018)

SFHC 175F

EPL

0–3

1–3

BaO–W

Heater

FM

USA

 

www.electricpropulsionlaboratory.com/Emitters.htm

SFHC 250F

EPL

0–10

1–5

BaO–W

Heater

FM

USA

 

www.electricpropulsionlaboratory.com/Emitters.htm

NRL Cathode

NRL

0.03–0.1

5

C12A7

Heater

LM

USA

 

McDonald and Caruso (2017)

SPT-50 (КЭ-1P)

Fakel

1.25–2

1.5

LaB6

Heater

FM

Russia

100–700 W Hall thruster cathode

Saevets et al. (2017)

PLAS-40 (КЭ-1H)

Fakel

1–2

0.5–1.8

LaB6

Heater

DM

Russia

100–700 W Hall thruster cathode

Potapenko and Gopanchuk (2013)

SPT-70 (КЭ-5A)

Fakel

2.2

2.5–3.5

LaB6

Heater

FM

Russia

700 kW Hall thruster (SPT-70) cathode

Murashko et al. (2007)

SPT-100 (КN-3)

Fakel

4.5

4.8

LaB6

Heater

FM

Russia

1.35 kW Hall thruster (SPT-100) cathode

Murashko et al. (2007)

SPT-140 Cathode

Fakel

3–15

2–8

LaB6

Heater

FM

Russia

4.5 kW Hall thruster cathode

Snyder and Hofer (2014)

KM-45 Cathode

Keldysh Research Center

0.88–1.27

1

LaB6

Heater

QM

Russia

350 W Hall thruster cathode

Gorshkov et al. (2008)

KM-5 Cathode

Keldysh Research Center

4.5

1.5–5

BaO–W

Heater

FM

Russia

1.35 kW Hall thruster cathode

Akimov et al. (2009)

KM-60 Cathode

Keldysh Research Center

1.8

0.75–12

LaB6

Heater

FM

Russia

900 W Hall thruster cathode

Vorontsov et al. (2017)

Keldysh Low-Current Cathode

Keldysh Research Center

0.09–0.3

0.15–0.8

BaO–W

Heater

DM

Russia

 

Puchkov (2017a)

PPS®1350 cathode

Safran/Fakel

≤ 7

4–7

BaO–W

Heater

FM

France/Russia

Operated with the PPS®1350-E

Marchandise et al. (2007)

PPS®5000 cathode

Safran

5–20

4–15

LaB6

Heater

QM

France

Operated with the PPS®5000

Balika et al. (2017)

MIREA cathode

MSTU MIREA

5–20

2–6

LaB6 (pallet)

Heater

LM

France

kW range Hall thruster cathode

Joussot et al. (2017)

Microwave Discharge Neutralizer

JAXA

0.3–0.7

0.22–0.75

N/A

RF

FM

Japan

Onboard DubaiSat-2

Kang et al. (2014)

µ1 Neutralizer

JAXA/The University of Tokyo

8e − 3–0.2

0.058–0.098

N/A

RF

FM

Japan

Neutralizer for MIPS ion engine onboard HODOYOSHI-4, for I-COUPS ion engine onboard PROCYON

Koizumi and Kuninaka (2011)

Kiku-8

JAXA

1–5

1.5–2.4

BaO–W

Heater

FM

Japan

Onboard Super Low Altitude Test Satellite (SLATS)

Ozaki et al. (2011)

µ10 Neutralizer

JAXA

0.10–0.19

0.2–0.6

N/A

RF

FM

Japan

Onboard Hayabusa2

Nishiyama et al. (2015b)

RF Plasma Cathode

Tokyo Metropolitan University

0.4–3.6

1–4

N/A

RF

DM

Japan

Operated with a 1 kW TAL-type Hall thruster

Watanabe et al. (2015)

LaB6 Hollow Cathode

Tokyo University of Agriculture and Technology/JAXA/Tokyo Metropolitan University

10–50

9.7–39

LaB6

Heater

LM

Japan

 

Oshio et al. (2019)

T5 Cathode

Qinetiq

≤ 5

0.5–4.5

BaO–W

Heater

FM

UK

Flight ion thruster cathode

Arcis et al. (2015)

T6 Discharge

Qinetiq

10–17.5

7.1

BaO–W

Heater

FM

UK

Flight ion thruster cathode

Snyder et al. (2010)

T6 Neutralizer

Qinetiq

1–2.2

4

BaO–W

Heater

FM

UK

Flight ion thruster cathode

Snyder et al. (2010)

UoSH Cathode

UoSH

5–8

0.5–1.75

LaB6

Heaterless

LM

UK

 

Daykin-Iliopoulos et al. (2017)

HiPER cathode

University of Southampton/Mars Space/QinetiQ

≤ 180

1.5–100

BaO–W

Heater

LM

UK

Developed under HiPER project

Coletti and Gabriel (2012)

QCT-200 Cathode

SSTL

1–4.5

4

BaO–W

Heater

FM

UK

Flight cathode (NovaSAR spacecraft)

Lane and Knoll (2015)

HC1

SITAEL

0.3–1

0.8–5

BaO–W

Heater

QM

Italy

100 W Hall thruster cathode

Misuri (2018)

HC3

SITAEL

1–3

0.8–8

LaB6

Heater

EM

Italy

400 W Hall thruster cathode

By Author

HC20/HC20 h

SITAEL

8–20

5–40

LaB6

Heaterless/heater

EM

Italy

5 kW Hall thruster cathodes

By Author

HC60

SITAEL

30–60

20–60

LaB6

Heater

QM

Italy

20 kW Hall thruster cathode

By Author

NccA 1000

LABEN/Proel

0.5–1

0.2–1

BaO–W

Heater

FM

Italy

RIT-10, RMT application

Arcis et al. (2015)

NccA 5000

LABEN/Proel

2–5

1–5

BaO–W

Heater

QM

Italy

PPS 1350, SPT 100 application

Arcis et al. (2015)

NccA 15000

LABEN/Proel

5–20

3–8

BaO–W

Heater

LM

Italy

PPS X000 and RIT-XT application

Arcis et al. (2015)

RHHC

Rafael

0.5–1.2

1–2.5

BaO–W

Heaterless

QM

Israel

100–300 W Hall thruster cathode

By Author

LHC-5

LIP

0.8–5

1.36

LaB6

Heater

FM

China

Flight LIPS-200 Ion thruster and LHT-100 Hall Thruster

Jia et al. (2015)

HIT Cathode

HIT

5–8.3

4

LaB6

Heaterless

DM

China

3–5 kW Hall Thruster

Ning et al. (2018)

BUSTLab cathode

BUSTLab

4–15

9–10

LaB6

Heater

LM

Turkey

Development model cathode

Kurt et al. (2017)

HALE Cathode

The Scientific and Technological Research Council of Turkey (TUBITAK)

1–8

0.5–10

Cesium

Heater

LM

Turkey

 

Cherkun and Uluşen (2017)

RIT 10 Cathode

ArianeGroup GmbH

0.2–0.35

0.4

N/A

RF

EM

Germany

 

Aspects of advanced neutralizer development for the RIT-2x family of gridded ion engines

RIT 2× Cathode

ArianeGroup GmbH/Mars Space Ltd.

1.3–4.3

2–9

BaO–W

Heater

EM

Germany

 

Aspects of advanced neutralizer development for the RIT-2x family of gridded ion engines

RFPBN

Leibniz-Institute of Surface Modification

≤ 0.4

≤ 5

N/A

RF

DM

Germany

RF plasma bridge neutralizer

Scholze et al. (2017)

HKN 5000

THALES

0.1–5

0.1–5

W/Os Mixed Metal Matrix

Heater

EM

Germany

Operated with RIT22 (EADS

Koch et al. (2007)

University of Dresden Cathode

University of Dresden

1–3

20

C12A7

Heaterless

LM

Germany

 

Drobny and Tajmar (2017)

PSAC cathode

PSAC/NTU

0.6–1

0.3–1

LaB6

Heater

LM

Singapore

100–300 W Hall thruster cathode

Levchenko et al. (2018c)

SHC-0.3A

Kharkiv Aviation Institute

0.2–1

0.1–1.5

BaO–W

Heaterless

LM

Ukraine

SPT-20M Hall thruster cathode

Loyan et al. (2013)

SHC-2A

Kharkiv Aviation Institute

1–3

1.3

BaO–W

Heaterless

LM

Ukraine

SPT-M70 Hall thruster cathode

Loyan et al. (2013)

SHC-5A

Kharkiv Aviation Institute

2–7

1–10

BaO–W

Heaterless

LM

Ukraine

SPT-100M Hall thruster cathode

Loyan et al. (2013)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lev, D.R., Mikellides, I.G., Pedrini, D. et al. Recent progress in research and development of hollow cathodes for electric propulsion. Rev. Mod. Plasma Phys. 3, 6 (2019). https://doi.org/10.1007/s41614-019-0026-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41614-019-0026-0

Keywords

Navigation