Advertisement

Recent progress in Asia-Pacific solar physics and astrophysics

Summary of the Solar/Astron session
  • P. F. ChenEmail author
  • K. Shibata
  • R. Matsumoto
Review Paper
  • 555 Downloads

Abstract

More than 40 participants from the solar/astrophysical community attended the First Asia-Pacific Conference on Plasma Physics. Among them, four colleagues presented invited talks in the plenary session. In the Solar/Astron session, there were 23 invited talks and 14 contributed talks, with another two posters. These talks cover recent progress obtained in a wide spectrum of topics, including solar and galactic dynamo, solar and stellar flares, solar and galactic filaments, solar and astrophysical jets, solar and accretion disk winds, plasma waves and coronal heating, solar coronal mass ejections, magnetic reconnection in non-relativistic and relativistic regimes, star and planetary formation, shock–medium interactions, and even gravitational waves. Laboratory laser experiments and some new rocket and space missions were also introduced.

Keywords

Solar physics Astrophysics Laboratory experiments 

Notes

Acknowledgements

The authors are grateful to Prof. M. Kikuchi for the invitation to write this summary paper, and to the referees for their detailed suggestions. PFC was supported by the Chinese foundations (NSFC 11533005 and BRA2017359).

References

  1. B.P. Abbott, R. Abbott, T.D. Abbott, M.R. Abernathy, F. Acernese, K. Ackley, C. Adams, T. Adams, P. Addesso, R.X. Adhikari et al., Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116(6), 061102 (2016).  https://doi.org/10.1103/PhysRevLett.116.061102,1602.03837 ADSMathSciNetCrossRefGoogle Scholar
  2. J.J. Aly, How much energy can be stored in a three-dimensional force-free magnetic field? ApJL 375, L61–L64 (1991).  https://doi.org/10.1086/186088 ADSCrossRefGoogle Scholar
  3. T.E. Berger, R.A. Shine, G.L. Slater et al., Hinode SOT observations of solar quiescent prominence dynamics. ApJL 676, L89 (2008).  https://doi.org/10.1086/587171 ADSCrossRefGoogle Scholar
  4. Y. Bi, Y. Jiang, J. Yang, J. Hong, H. Li, B. Yang, Z. Xu, Observation of a reversal of rotation in a sunspot during a solar flare. Nat. Commun. 7, 13798 (2016).  https://doi.org/10.1038/ncomms13798 ADSCrossRefGoogle Scholar
  5. Y. Bi, J. Yang, Y. Jiang, J. Hong, Z. Xu, Z. Qu, K. Ji, The photospheric vortex flows during a solar flare. ApJL 849, L35 (2017).  https://doi.org/10.3847/2041-8213/aa960e ADSCrossRefGoogle Scholar
  6. D.F. Bu, F. Yuan, Z.M. Gan, X.H. Yang, Hydrodynamical numerical simulation of wind production from black hole hot accretion flows at very large radii. ApJ 818, 83 (2016a).  https://doi.org/10.3847/0004-637X/818/1/83. 1510.03124ADSCrossRefGoogle Scholar
  7. D.F. Bu, F. Yuan, Z.M. Gan, X.H. Yang, Magnetohydrodynamic numerical simulation of wind production from hot accretion flows around black holes at very large radii. ApJ 823, 90 (2016b).  https://doi.org/10.3847/0004-637X/823/2/90. 1603.09442ADSCrossRefGoogle Scholar
  8. L. Chen, D.J. Wu, G.Q. Zhao, J.F. Tang, J. Huang, Excitation of Kinetic Alfvén waves by fast electron beams. ApJ 793, 13 (2014a).  https://doi.org/10.1088/0004-637X/793/1/13 ADSCrossRefGoogle Scholar
  9. P.F. Chen, Coronal mass ejections: models and their observational basis. Living Rev. Sol. Phys. 8, 1 (2011).  https://doi.org/10.12942/lrsp-2011-1 ADSCrossRefGoogle Scholar
  10. P.F. Chen, K. Shibata, An emerging flux trigger mechanism for coronal mass ejections. ApJ 545, 524–531 (2000).  https://doi.org/10.1086/317803 ADSCrossRefGoogle Scholar
  11. P.F. Chen, L.K. Harra, C. Fang, Imaging and spectroscopic observations of a filament channel and the implications for the nature of counter-streamings. ApJ 784, 50 (2014b).  https://doi.org/10.1088/0004-637X/784/1/50.1401.4514 ADSCrossRefGoogle Scholar
  12. G.S. Choe, Revisiting the Aly-Sturrock constraint. ApJ (2018). In preparationGoogle Scholar
  13. A.R. Choudhuri, Starspots, stellar cycles and stellar flares: lessons from solar dynamo models. Sci. China Phys., Mech. Astron. 60(1), 19601 (2017).  https://doi.org/10.1007/s11433-016-0413-7.1612.02544 ADSCrossRefGoogle Scholar
  14. Y. Fan, F. Fang, A simulation of convective dynamo in the solar convective envelope: maintenance of the solar-like differential rotation and emerging flux. ApJ 789, 35 (2014).  https://doi.org/10.1088/0004-637X/789/1/35.1405.3926 ADSCrossRefGoogle Scholar
  15. J. Feynman, S.F. Martin, The initiation of coronal mass ejections by newly emerging magnetic flux. JGR 100, 3355–3367 (1995).  https://doi.org/10.1029/94JA02591 ADSCrossRefGoogle Scholar
  16. T.K. Fowler, H. Li, Spheromaks and how plasmas may explain the ultra high energy cosmic ray mystery. J. Plasma Phys. 82(5), 595820503 (2016).  https://doi.org/10.1017/S0022377816000866 CrossRefGoogle Scholar
  17. W. Gan , Y. Deng, H. Li, et al, ASO-S: advanced space-based solar observatory. in Proceedings of the SPIE Solar Physics and Space Weather Instrumentation VI, vol. 9604, p. 96040T.  https://doi.org/10.1117/12.2189062
  18. M. Ghizaru, P. Charbonneau, P.K. Smolarkiewicz, Magnetic cycles in global large-eddy simulations of solar convection. ApJL 715, L133–L137 (2010).  https://doi.org/10.1088/2041-8205/715/2/L133 ADSCrossRefGoogle Scholar
  19. Y. Guo, B. Schmieder, P. Démoulin, T. Wiegelmann, G. Aulanier, T. Török, V. Bommier, Coexisting flux rope and dipped arcade sections along one solar filament. ApJ 714, 343–354 (2010).  https://doi.org/10.1088/0004-637X/714/1/343 ADSCrossRefGoogle Scholar
  20. J.L. Han, Observing interstellar and intergalactic magnetic fields. ARAA 55, 111–157 (2017).  https://doi.org/10.1146/annurev-astro-091916-055221 ADSCrossRefGoogle Scholar
  21. A. Hillier, The magnetic Rayleigh–Taylor instability in solar prominences. Rev. Mod. Plasma Phys. 2, 1 (2018).  https://doi.org/10.1007/s41614-017-0013-2 ADSCrossRefGoogle Scholar
  22. A. Hillier, T. Berger, H. Isobe, K. Shibata, Numerical simulations of the Magnetic Rayleigh–Taylor instability in the Kippenhahn–Schlüter prominence model. I. Formation of upflows. ApJ 746, 120 (2012a).  https://doi.org/10.1088/0004-637X/746/2/120 ADSCrossRefGoogle Scholar
  23. A. Hillier, R. Hillier, D. Tripathi, Determination of prominence plasma \(\beta\) from the dynamics of rising plumes. ApJ 761, 106 (2012b).  https://doi.org/10.1088/0004-637X/761/2/106.1211.0742 ADSCrossRefGoogle Scholar
  24. H. Hotta, M. Rempel, T. Yokoyama, Large-scale magnetic fields at high Reynolds numbers in magnetohydrodynamic simulations. Science 351, 1427–1430 (2016).  https://doi.org/10.1126/science.aad1893 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. H. Iijima, T. Yokoyama, Effect of coronal temperature on the scale of solar chromospheric jets. ApJL 812, L30 (2015).  https://doi.org/10.1088/2041-8205/812/2/L30.1509.06677 ADSCrossRefGoogle Scholar
  26. H. Iijima, T. Yokoyama, A three-dimensional magnetohydrodynamic simulation of the formation of solar chromospheric jets with twisted magnetic field lines. ApJ 848, 38 (2017).  https://doi.org/10.3847/1538-4357/aa8ad1.1709.01522 ADSCrossRefGoogle Scholar
  27. T. Inoue, Inutsuka Si, Formation of turbulent and magnetized molecular clouds via accretion flows of H I clouds. ApJ 759, 35 (2012).  https://doi.org/10.1088/0004-637X/759/1/35.1205.6217 ADSCrossRefGoogle Scholar
  28. N. Ishiguro, K. Kusano, Double arc instability in the solar corona. ApJ 843, 101 (2017).  https://doi.org/10.3847/1538-4357/aa799b.1706.06112 ADSCrossRefGoogle Scholar
  29. M. Iwamoto, T. Amano, M. Hoshino, Y. Matsumoto, Persistence of precursor waves in two-dimensional relativistic shocks. ApJ 840, 52 (2017).  https://doi.org/10.3847/1538-4357/aa6d6f.1704.04411 ADSCrossRefGoogle Scholar
  30. R. Kano, J. Trujillo Bueno, A. Winebarger et al., Discovery of scattering polarization in the hydrogen Ly\(\alpha\) line of the solar disk radiation. ApJL 839, L10 (2017).  https://doi.org/10.3847/2041-8213/aa697f.1704.03228 ADSCrossRefGoogle Scholar
  31. T. Kawashima, Y. Matsumoto, R. Matsumoto, A possible time-delayed brightening of the Sgr A* accretion flow after the pericenter passage of the G2 cloud. PASJ 69, 43 (2017).  https://doi.org/10.1093/pasj/psx015.1702.07903 ADSCrossRefGoogle Scholar
  32. J.A. Klimchuk, Key aspects of coronal heating. Philos. Trans. R. Soc. Lond. Ser. A 373, 20140256 (2015).  https://doi.org/10.1098/rsta.2014.0256,1410.5660 ADSCrossRefGoogle Scholar
  33. K. Kusano, Y. Bamba, T.T. Yamamoto, Y. Iida, S. Toriumi, A. Asai, Magnetic field structures triggering solar flares and coronal mass ejections. ApJ 760, 31 (2012).  https://doi.org/10.1088/0004-637X/760/1/31.1210.0598 ADSCrossRefGoogle Scholar
  34. B.R. Lee, Magnetic reconnection. Plasma Science and Technology (2018). In preparationGoogle Scholar
  35. H. Li, The Lyman-\(\alpha\) solar telescope (LST) for the ASO-S mission. in IAU Symposium Solar and Stellar Flares and their Effects on Planets, vol. 320, ed. by A.G. Kosovichev, S.L. Hawley, P. Heinzel, pp. 436–438 (2016),  https://doi.org/10.1017/S1743921316000533 CrossRefGoogle Scholar
  36. J. Li, W. Zhong, Summary of magnetic fusion plasma physics in 1st AAPPS-DPP meeting. Rev. Mod. Plasma Phys. 2, 3 (2018).  https://doi.org/10.1007/s41614-018-0015-8 ADSCrossRefGoogle Scholar
  37. R.P. Lin, WIND observations of suprathermal electrons in the interplanetary medium. SSR 86, 61–78 (1998).  https://doi.org/10.1023/A:1005048428480 ADSCrossRefGoogle Scholar
  38. M. Machida, K.E. Nakamura, T. Kudoh, T. Akahori, Y. Sofue, R. Matsumoto, Dynamo activities driven by magnetorotational instability and the parker instability in galactic gaseous disks. ApJ 764, 81 (2013).  https://doi.org/10.1088/0004-637X/764/1/81.1301.1414 ADSCrossRefGoogle Scholar
  39. H. Maehara, T. Shibayama, S. Notsu et al., Superflares on solar-type stars. Nature 485, 478–481 (2012).  https://doi.org/10.1038/nature11063 ADSCrossRefGoogle Scholar
  40. S.F. Martin, Conditions for the formation and maintenance of filaments (Invited Review). Sol. Phys. 182, 107–137 (1998).  https://doi.org/10.1023/A:1005026814076 ADSCrossRefGoogle Scholar
  41. S.F. Martin, R. Bilimoria, P.W. Tracadas, Magnetic field configurations basic to filament channels and filaments. in: NATO Advanced Science Institutes (ASI) Series C, NATO Advanced Science Institutes (ASI) Series C, vol 433, ed. by R.J. Rutten, C.J. Schrijver (1994), p. 303Google Scholar
  42. Y. Masada, T. Sano, Spontaneous formation of surface magnetic structure from large-scale dynamo in strongly stratified convection. ApJL 822, L22 (2016).  https://doi.org/10.3847/2041-8205/822/2/L22.1604.05374 ADSCrossRefGoogle Scholar
  43. Y. Masada, T. Sano, The compression effect. ApJ (2018). In preparationGoogle Scholar
  44. Y. Matsumoto, Y. Asahina, Y. Kudoh, T. Kawashima, J. Matsumoto, H.R. Takahashi, T. Minoshima, S. Zenitani, T. Miyoshi, R. Matsumoto, Magnetohydrodynamic Simulation Code CANS+: Assessments and Applications. ArXiv e-prints 1611, 01775 (2016)Google Scholar
  45. Y. Matsumoto, T. Amano, T.N. Kato, M. Hoshino, Electron surfing and drift accelerations in a Weibel-dominated high-mach-number shock. Phys. Rev. Lett. 119(10), 105101 (2017).  https://doi.org/10.1103/PhysRevLett.119.105101 CrossRefGoogle Scholar
  46. D.B. Melrose, Rethinking the solar flare paradigm. Plasma Sci. Tech. 20, 074003 (2018). (1803.10389)CrossRefGoogle Scholar
  47. J. Muhamad, K. Kusano, S. Inoue, D. Shiota, Magnetohydrodynamic simulations for studying solar flare trigger mechanism. ApJ 842, 86 (2017).  https://doi.org/10.3847/1538-4357/aa750e.1706.07153 ADSCrossRefGoogle Scholar
  48. T.J. Okamoto, P. Antolin, B. De Pontieu, H. Uitenbroek, T. Van Doorsselaere, T. Yokoyama, Resonant absorption of transverse oscillations and associated heating in a solar prominence. I. Observational aspects. ApJ 809, 71 (2015).  https://doi.org/10.1088/0004-637X/809/1/71.1506.08965 ADSCrossRefGoogle Scholar
  49. Y. Ouyang, Y.H. Zhou, P.F. Chen, C. Fang, Chirality and magnetic configurations of solar filaments. ApJ 835, 94 (2017).  https://doi.org/10.3847/1538-4357/835/1/94.1612.01054 ADSCrossRefGoogle Scholar
  50. A. Pouquet, U. Frisch, J. Leorat, Strong MHD helical turbulence and the nonlinear dynamo effect. J. Fluid Mech. 77, 321–354 (1976).  https://doi.org/10.1017/S0022112076002140 ADSCrossRefzbMATHGoogle Scholar
  51. D. Prasad, P. Sharma, A. Babul, Cool core cycles: cold gas and AGN jet feedback in cluster cores. ApJ 811, 108 (2015).  https://doi.org/10.1088/0004-637X/811/2/108.1504.02215 ADSCrossRefGoogle Scholar
  52. D. Prasad, P. Sharma, A. Babul, AGN jet-driven stochastic cold accretion in cluster cores. MNRAS 471, 1531–1542 (2017).  https://doi.org/10.1093/mnras/stx1698.1611.02710 ADSCrossRefGoogle Scholar
  53. M. Ryutova, T. Berger, Z. Frank, T. Tarbell, A. Title, Observation of plasma instabilities in quiescent prominences. Sol. Phys. 267, 75–94 (2010).  https://doi.org/10.1007/s11207-010-9638-9 ADSCrossRefGoogle Scholar
  54. H. Sano, T. Tanaka, K. Torii, T. Fukuda, S. Yoshiike, J. Sato, H. Horachi, T. Kuwahara, T. Hayakawa, H. Matsumoto, T. Inoue, R. Yamazaki, S. Inutsuka, A. Kawamura, K. Tachihara, H. Yamamoto, T. Okuda, N. Mizuno, T. Onishi, A. Mizuno, Y. Fukui, Non-thermal X-Rays and interstellar gas toward the \(\gamma\)-Ray supernova remnant RX J1713.7-3946: evidence for X-ray enhancement around CO and H I clumps. ApJ 778, 59 (2013).  https://doi.org/10.1088/0004-637X/778/1/59,1304.7722 ADSCrossRefGoogle Scholar
  55. N. Seehafer, Electric current helicity in the solar atmosphere. Sol. Phys. 125, 219–232 (1990).  https://doi.org/10.1007/BF00158402 ADSCrossRefGoogle Scholar
  56. J. Seough, Y. Nariyuki, P.H. Yoon, S. Saito, Strahl formation in the solar wind electrons via whistler instability. ApJL 811, L7 (2015).  https://doi.org/10.1088/2041-8205/811/1/L7 ADSCrossRefGoogle Scholar
  57. Y. Shen, Y. Liu, Y.D. Liu, P.F. Chen, J. Su, Z. Xu, Z. Liu, Fine magnetic structure and origin of counter-streaming mass flows in a quiescent solar prominence. ApJL 814, L17 (2015).  https://doi.org/10.1088/2041-8205/814/1/L17.1511.02489 ADSCrossRefGoogle Scholar
  58. K. Shibata, T. Magara, Solar flares: magnetohydrodynamic processes. Living Rev. Sol. Phys. 8, 6 (2011).  https://doi.org/10.12942/lrsp-2011-6 ADSCrossRefGoogle Scholar
  59. K. Shibata, Y. Ishido, L.W. Acton et al., Observations of X-ray jets with the YOHKOH Soft X-ray Telescope. PASJ 44, L173–L179 (1992)ADSCrossRefGoogle Scholar
  60. K. Shibata, T. Nakamura, T. Matsumoto et al., Chromospheric anemone jets as evidence of ubiquitous reconnection. Science 318, 1591 (2007).  https://doi.org/10.1126/science.1146708.0810.3974 ADSCrossRefGoogle Scholar
  61. K. Shibata, H. Isobe, A. Hillier, A.R. Choudhuri, H. Maehara, T.T. Ishii, T. Shibayama, S. Notsu, Y. Notsu, T. Nagao, S. Honda, D. Nogami, Can superflares occur on our sun? PASJ 65, 49 (2013).  https://doi.org/10.1093/pasj/65.3.49,1212.1361 ADSCrossRefGoogle Scholar
  62. J. Shimoda, Solar dynamo. ApJ. (2018) In preparationGoogle Scholar
  63. Y. Shoji, R. Yamazaki, S. Tomita et al., Toward the generation of magnetized collisionless shocks with high-power lasers. Plasma and Fusion Res. 11(2), 3401031 (2016).  https://doi.org/10.1585/pfr.11.3401031 ADSCrossRefGoogle Scholar
  64. P.A. Sturrock, Maximum energy of semi-infinite magnetic field configurations. ApJ 380, 655–659 (1991).  https://doi.org/10.1086/170620 ADSCrossRefGoogle Scholar
  65. H.R. Takahashi, K. Ohsuga, General relativistic radiation MHD simulations of supercritical accretion onto a magnetized neutron star: modeling of ultraluminous X-ray pulsars. ApJL 845, L9 (2017).  https://doi.org/10.3847/2041-8213/aa8222.1707.07356 ADSCrossRefGoogle Scholar
  66. H.R. Takahashi, K. Ohsuga, T. Kawashima, Y. Sekiguchi, Formation of overheated regions and truncated disks around black holes: three-dimensional general relativistic radiation-magnetohydrodynamics simulations. ApJ 826, 23 (2016).  https://doi.org/10.3847/0004-637X/826/1/23.1605.04992 ADSCrossRefGoogle Scholar
  67. M. Takamoto, A. Lazarian, Compressible relativistic magnetohydrodynamic turbulence in magnetically dominated plasmas and implications for a strong-coupling regime. ApJL 831, L11 (2016).  https://doi.org/10.3847/2041-8205/831/2/L11.1610.01373 ADSCrossRefGoogle Scholar
  68. M. Takamoto, T. Inoue, A. Lazarian, Turbulent reconnection in relativistic plasmas and effects of compressibility. ApJ 815, 16 (2015).  https://doi.org/10.1088/0004-637X/815/1/16.1509.07703 ADSCrossRefGoogle Scholar
  69. S. Takeshige, H. Takahashi, K. Shibata, The compression effect. ApJ (2018). In preparationGoogle Scholar
  70. B. Tan, C. Tan, Microwave quasi-periodic pulsation with millisecond bursts in a solar flare on 2011 august 9. ApJ 749, 28 (2012).  https://doi.org/10.1088/0004-637X/749/1/28,1202.1578 ADSCrossRefGoogle Scholar
  71. J. Tao, L. Wang, Q. Zong, G. Li, C.S. Salem, R.F. Wimmer-Schweingruber, J. He, C. Tu, S.D. Bale, Quiet-time suprathermal ( 0.1-1.5 keV) electrons in the solar wind. ApJ 820, 22 (2016).  https://doi.org/10.3847/0004-637X/820/1/22 ADSCrossRefGoogle Scholar
  72. H. Tian, E.E. DeLuca, S.R. Cranmer et al., Prevalence of small-scale jets from the networks of the solar transition region and chromosphere. Science 346(27), 1255711 (2014).  https://doi.org/10.1126/science.1255711.1410.6143 CrossRefGoogle Scholar
  73. K. Tomida, S. Okuzumi, M.N. Machida, Radiation magnetohydrodynamic simulations of protostellar collapse: nonideal magnetohydrodynamic effects and early formation of circumstellar disks. ApJ 801, 117 (2015).  https://doi.org/10.1088/0004-637X/801/2/117.1501.04102 ADSCrossRefGoogle Scholar
  74. K. Tomida, M.N. Machida, T. Hosokawa, Y. Sakurai, C.H. Lin, Grand-design spiral arms in a young forming circumstellar disk. ApJL 835, L11 (2017).  https://doi.org/10.3847/2041-8213/835/1/L11.1611.09361 ADSCrossRefGoogle Scholar
  75. S. Tomita, Y. Ohira, Weibel instability driven by spatially anisotropic density structures. ApJ 825, 103 (2016).  https://doi.org/10.3847/0004-637X/825/2/103.1606.03213 ADSCrossRefGoogle Scholar
  76. T. Umeda, Y. Kidani, S. Matsukiyo, R. Yamazaki, Microinstabilities at perpendicular collisionless shocks: a comparison of full particle simulations with different ion to electron mass ratio. Phys. Plasmas 19(4), 042109 (2012).  https://doi.org/10.1063/1.3703319,1204.2539 ADSCrossRefGoogle Scholar
  77. T. Umeda, Y. Kidani, S. Matsukiyo, R. Yamazaki, Dynamics and microinstabilities at perpendicular collisionless shock: a comparison of large-scale two-dimensional full particle simulations with different ion to electron mass ratio. Phys. Plasmas 21(2), 022102 (2014).  https://doi.org/10.1063/1.4863836.1401.5903 ADSCrossRefGoogle Scholar
  78. Y. Voitenko, J. de Keyser, Turbulent spectra and spectral kinks in the transition range from MHD to kinetic Alfvén turbulence. Nonlinear Process. Geophys. 18, 587–597 (2011).  https://doi.org/10.5194/npg-18-587-2011.1105.1941 ADSCrossRefGoogle Scholar
  79. L. Wang, L. Yang, J. He et al., Solar wind 20–200 keV superhalo electrons at quiet times. ApJL 803, L2 (2015).  https://doi.org/10.1088/2041-8205/803/1/L2 ADSCrossRefGoogle Scholar
  80. Q.D. Wang, M.A. Nowak, S.B. Markoff et al., Dissecting X-ray-emitting gas around the center of our galaxy. Science 341, 981–983 (2013).  https://doi.org/10.1126/science.1240755,1307.5845 ADSCrossRefGoogle Scholar
  81. D.F. Webb, T.A. Howard, Coronal mass ejections: observations. Living Rev. Sol. Phys. 9, 3 (2012).  https://doi.org/10.12942/lrsp-2012-3 ADSCrossRefGoogle Scholar
  82. O.C. Wilson, Chromospheric variations in main-sequence stars. ApJ 226, 379–396 (1978).  https://doi.org/10.1086/156618 ADSCrossRefGoogle Scholar
  83. D.J. Wu, L. Chen, Excitation of Kinetic Alfvén waves by density striation in magneto-plasmas. ApJ 771, 3 (2013).  https://doi.org/10.1088/0004-637X/771/1/3 ADSCrossRefGoogle Scholar
  84. L. Xiang, D.J. Wu, L. Chen, Excitation of Ion cyclotron waves by ion and electron beams in compensated-current system. ApJ 857, 108 (2018).  https://doi.org/10.3847/1538-4357/aab662 ADSCrossRefGoogle Scholar
  85. H. Xie, M.S. Madjarska, B. Li, Z. Huang, L. Xia, T. Wiegelmann, H. Fu, C. Mou, The plasma parameters and geometry of cool and warm active region loops. ApJ 842, 38 (2017).  https://doi.org/10.3847/1538-4357/aa7415.1705.02564 ADSCrossRefGoogle Scholar
  86. F. Yuan, R. Narayan, Hot accretion flows around black holes. ARAA 52, 529–588 (2014).  https://doi.org/10.1146/annurev-astro-082812-141003.1401.0586 ADSCrossRefGoogle Scholar
  87. F. Yuan, M. Wu, D. Bu, Numerical simulation of hot accretion flows. I. A large radial dynamical range and the density profile of Accretion Flow. ApJ 761, 129 (2012).  https://doi.org/10.1088/0004-637X/761/2/129,1206.4157 ADSCrossRefGoogle Scholar
  88. F. Yuan, Z. Gan, R. Narayan, A. Sadowski, D. Bu, X.N. Bai, Numerical simulation of hot accretion flows. III. Revisiting wind properties using the trajectory approach. ApJ 804, 101 (2015).  https://doi.org/10.1088/0004-637X/804/2/101,1501.01197 ADSCrossRefGoogle Scholar
  89. M. Zhang, Y. Fan, Solar dynamo. ApJ (2018). In preparationGoogle Scholar
  90. J.S. Zhao, Y. Voitenko, D.J. Wu, J. De Keyser, Nonlinear Generation of kinetic-scale waves by magnetohydrodynamic Alfvén waves and nonlocal spectral transport in the solar wind. ApJ 785, 139 (2014).  https://doi.org/10.1088/0004-637X/785/2/139 ADSCrossRefGoogle Scholar
  91. J.Y. Zhong, J. Lin, Y.T. Li et al., Relativistic electrons produced by reconnecting electric fields in a laser-driven bench-top solar flare. ApJS 225, 30 (2016).  https://doi.org/10.3847/0067-0049/225/2/30 ADSCrossRefGoogle Scholar
  92. J.Z. Zhu, Chirality, extended magnetohydrodynamics statistics and topological constraints for solar wind turbulence. MNRAS 470, L87–L91 (2017).  https://doi.org/10.1093/mnrasl/slx075 ADSCrossRefGoogle Scholar
  93. P. Zou, C. Fang, P.F. Chen, K. Yang, W. Cao, Magnetic separatrix as the source region of the plasma supply for an active-region filament. ApJ 836, 122 (2017).  https://doi.org/10.3847/1538-4357/836/1/1221701.01526 ADSCrossRefGoogle Scholar

Copyright information

© Division of Plasma Physics, Association of Asia Pacific Physical Societies 2018

Authors and Affiliations

  1. 1.School of Astronomy and Space ScienceNanjing UniversityNanjingChina
  2. 2.Kwasan and Hida ObservatoriesKyoto UniversityKyotoJapan
  3. 3.Department of PhysicsChiba UniversityChibaJapan

Personalised recommendations