Advertisement

Towards universal plasma-enabled platform for the advanced nanofabrication: plasma physics level approach

  • O. Baranov
  • S. Xu
  • K. Ostrikov
  • B. B. Wang
  • U. Cvelbar
  • K. Bazaka
  • I. LevchenkoEmail author
Review Paper

Abstract

Growing demand for efficient, high-resolution surface processing has led to the emergence of a rich variety of plasma-based technologies underpinned by an equally wide range of technological setups, each optimized for a specific task, e.g. highly-selective removal of surface layers, precision surface functionalization and nanoscale structuring, or deposition of thin films and nanostructures. However, with increasing device integration and miniaturization, flexible processing technologies capable of delivering complex treatments, such as the growth of complex hierarchical single- and multi-component nanostructures within a single processing environment are highly desired. Yet, such systems are difficult to achieve due to the necessity of the in-process float, and limiting technological capabilities of individual plasma sources and treatment setups. Using a novel flexible platform as an example, this review presents a careful analysis of the physical principles, capabilities and limitations of existing plasma technologies with an ultimate aim to define key principles for the development of prospective flexible platforms for complex plasma-enabled material synthesis and processing. Such a platform would have a significant potential to increase the effectiveness of plasma technology with respect to productivity, material and energy consumption, cost and turnaround time.

Keywords

Plasma technology Advanced materials Deposition Sputtering 

Notes

Acknowledgements

This work was supported by EDB (OSTIn) and National Research Foundation, Singapore. O.B. acknowledges the support from European Union’s Horizon 2020 research and innovation programme under Grant agreement no. 766894. I. L. acknowledges the support from the School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology. K.B. acknowledges the funding from the Australian Research Council (DE130101550, DP160103116, DP180101254).

References

  1. R. Abdolvand, F. Ayazi, Sens. Actuator A. A 144, 109–116 (2008)Google Scholar
  2. I.I. Aksenov, in Vacuum Arc in Erosive Plasma Sources (In Russian) (Kharkov: National Scientific Centre “Kharkov Institute of Physics and Technology”, 2005)Google Scholar
  3. A. Altaweel, G. Filipič, T. Gries, T. Belmonte, J. Cryst. Growth 407, 17–24 (2014)ADSGoogle Scholar
  4. C. Alves Jr., E.F. da Silva, A.E. Martinelli, Surf. Coat. Technol. 139, 1–5 (2001)Google Scholar
  5. H. Amemiya, K. Ogawa, J. Phys. D Appl. Phys. 30, 879 (1997)ADSGoogle Scholar
  6. A. Anders, Handbook of Plasma Immersion Ion Implantation and Deposition (Wiley, New York, 2000)Google Scholar
  7. A. Anders, Cathodic Arcs: From Fractal Spots to Energetic Condensation (Springer, New York, 2008)Google Scholar
  8. A. Anders, Surf. Coat. Technol. 257, 308–325 (2014)Google Scholar
  9. A. Anders, J. Brown, IEEE Trans. Plasma Sci. 36(11), 2528–25291 (2011)ADSGoogle Scholar
  10. K.A. Atlasov, P. Gallo, A. Rudra, B. Dwir, E. Kapon, J. Vac. Sci. Technol. B 27(5), L21–L24 (2009)Google Scholar
  11. O. Baranov, M. Romanov, Plasma Process. Polym. 5, 256 (2008)Google Scholar
  12. O. Baranov, M. Romanov, K. Ostrikov, Phys. Plasmas 16, 053505 (2009a)ADSGoogle Scholar
  13. O. Baranov, M. Romanov, K. Ostrikov, Phys. Plasmas 16, 063505 (2009b)ADSGoogle Scholar
  14. O. Baranov, M. Romanov, S. Kumar, X. Zhong, K. Ostrikov, J. Appl. Phys. 109(6), 063304 (2011)ADSGoogle Scholar
  15. O. Baranov, M. Romanov, J. Fang, U. Cvelbar, K. Ostrikov, J. Appl. Phys. 112(7), 073302 (2012)ADSGoogle Scholar
  16. O. Baranov, J. Fang, A. Rider, S. Kumar, K. Ostrikov, I.E.E.E. Trans, Plasma Sci. 41(12), 3640 (2013)Google Scholar
  17. O. Baranov, X. Zhong, J. Fang, S. Kumar, S. Xu, U. Cvelbar, D. Mariotti, K. Ostrikov, I.E.E.E. Trans, Plasma Sci. 42(10), 2518 (2014a)Google Scholar
  18. O. Baranov, J. Fang, M. Keidar, X. Lu, U. Cvelbar, K. Ostrikov, I.E.E.E. Trans, Plasma Sci. 42(10), 2464 (2014b)Google Scholar
  19. O. Baranov, K. Bazaka, H. Kersten, M. Keidar, U. Cvelbar, S. Xu, I. Levchenko, Plasma under control: advanced solutions and perspectives for plasma flux management in material treatment and nanosynthesis. Appl. Phys. Rev. 4, 041302 (2017a)ADSGoogle Scholar
  20. O. Baranov, J. Fang, K. Ostrikov, U. Cvelbar, Mater. Chem. Phys. 188, 143–153 (2017b)Google Scholar
  21. K. Bazaka, M. V. Jacob, K. Ostrikov, Sustainable Life Cycles of Natural-Precursor-Derived Nanocarbons, Chem. Rev. 116, 163–214 (2016)Google Scholar
  22. M. Benda, J. Vlček, V. Cibulka, J. Musil, J. Vac. Sci. Technol. A 15(5), 2636–2643 (1997)ADSGoogle Scholar
  23. M.M.M. Bilek, A. Anders, I.G. Brown, Plasma Sources Sci. Technol. 10, 606 (2001)ADSGoogle Scholar
  24. B.D. Blackwell, J.F. Caneses, C.M. Samuell, J. Wach, J. Howard, C. Corr, Plasma Sources Sci. Technol. 21, 055033 (2012)ADSGoogle Scholar
  25. J.-P. Boeuf, J. Appl. Phys. 121, 011101 (2017)ADSGoogle Scholar
  26. J. Bohlmark, M. Östbye, M. Lattemann, H. Ljungcrantz, T. Rosell, U. Helmersson, Thin Solid Films 515, 1928 (2006)ADSGoogle Scholar
  27. I. Boromei, L. Ceschini, A. Marconi, C. Martini, Wear 302(1–2), 899–908 (2013)Google Scholar
  28. F.Z. Bouanis, F. Bentiss, S. Bellayera, J.B. Vogta, C. Jama, Mater. Chem. Phys. 127, 329–334 (2011)Google Scholar
  29. J.H. Bowles, D. Duncan, D.N. Walker, W.E. Amatucci, J.A. Antoniades, Rev. Sci. Instrum. 67(2), 455–461 (1996)ADSGoogle Scholar
  30. R.L. Boxman, D. Sanders, P. Martin (eds.), Handbook of Vacuum Arc Science & Technology: Fundamentals and Applications (Noyes Publications, Park Ridge, 1995)Google Scholar
  31. NStJ Braithwaite, Plasma Sources Sci. Technol. 9, 517 (2000)ADSGoogle Scholar
  32. P. Chabert, N.St.J. Braithwaite, in Physics of Radio-Frequency Plasmas (Cambridge University Press, New York, 2011)Google Scholar
  33. C. Charles, R. Boswell, A. Bish, et al., Direct measurement of axial momentum imparted by an electrothermal radiofrequency plasma micro-thruster. Front. Phys. 4, Article 19 (2016). http://doi.org/10.3389/fphy.2016.00019
  34. M.D. Carter, P.M. Ryan, D. Hoffman, W.S. Lee, D. Buchberger, V. Godyak, J. Appl. Phys. 100, 073305 (2006)ADSGoogle Scholar
  35. K.M. Chang, C.C. Kuo, Y.W. Chang, C.G. Chao, T.F. Liu, Surf. Coat. Technol. 254, 313–318 (2014)Google Scholar
  36. C. Charles, Plasmas for spacecraft propulsion. J. Phys. D Appl. Phys. 42(16), 163001 (2009)ADSGoogle Scholar
  37. F. Chen, Introduction to Plasma Physics and Controlled Fusion (Plenum, New York, 1984)Google Scholar
  38. F.F. Chen, Phys. Plasmas 19, 093509 (2012)ADSGoogle Scholar
  39. F.F. Chen, Plasma Sources Sci. Technol. 24, 014001 (2015)ADSGoogle Scholar
  40. F.F. Chen, J.P. Chang, Lecture notes on principles of plasma processing (Plenum/Kluwer Publishers, New York, 2002)Google Scholar
  41. F.F. Chen, H. Torreblanca, Phys. Plasmas 16, 057102 (2009)ADSGoogle Scholar
  42. S. Chen, D. Luo, G. Zhao, Phys. Proc. 50, 163–168 (2013)ADSGoogle Scholar
  43. P.K. Chu, Surf. Coat. Technol. 229, 2–11 (2013)Google Scholar
  44. A.E. Crespi, M.E.H.M. da Costa, C.A. Figueroa, M.E.R. Dotto, A.P. Kauling, G.V. Soares, I.J.R. Baumvol, C. Giacomelli, Mater. Lett. 65, 2985–2988 (2011)Google Scholar
  45. M.C.R.L. da Cesconetto, A.R. Franco Jr., E.A. Vieira, Mater. Res. 18(2), 334–340 (2015)Google Scholar
  46. S.F.M. de Mariano, E.J.D.M. de Pillaca, M. Ueda, R.M. de Oliveira, Surf. Coat. Technol. 256, 47–51 (2014)Google Scholar
  47. R. Di Mundo, R. d’Agostino, F. Palumbo, ACS Appl. Mater. Interfaces. 6, 17059–17066 (2014)Google Scholar
  48. P. Diomede, D.J. Economou, J. Appl. Phys. 115, 233302 (2014)ADSGoogle Scholar
  49. C.Y. Duluard, P. Ranson, L.E. Pichon, J. Pereira, E.H. Oubensaid, P. Lefaucheux, M. Puechand, R. Dussart, J. Micromech. Microeng. 21, 065015 (2011)ADSGoogle Scholar
  50. J. Fang, I. Levchenko, S. Kumar, D. Seo, K. Ostrikov, Sci. Technol. Adv. Mater. 15, 055009 (2014)Google Scholar
  51. F. Ferreira, J.C. Oliveira, A. Cavaleiro, Surf. Coat. Technol. 291, 365–375 (2016)Google Scholar
  52. F. Fietzke, H. Morgner, S. Gunther, Plasma Process. Polym. 6, S242–S246 (2009)Google Scholar
  53. G. Filipič, O. Baranov, M. Mozetič, K. Ostrikov, U. Cvelbar, Phys. Plasmas 21, 113506 (2014)Google Scholar
  54. G. Filipič, O. Baranov, M. Mozetič, U. Cvelbar, J. Appl. Phys. 17, 043304 (2015)ADSGoogle Scholar
  55. A. Fossati, F. Borgioli, E. Galvanetto, T. Bacci, Surf. Coat. Technol. 200, 3511–3517 (2006)Google Scholar
  56. T. Furukawa, K. Takizawa, D. Kuwahara, S. Shinohara, Phys. Plasmas 24, 043505 (2017)ADSGoogle Scholar
  57. S.C. Gallo, H. Dong, Vacuum 84, 321–325 (2010)Google Scholar
  58. S.C. Gallo, A.E. Crespi, F. Cemin, C.A. Figueroa, I.J.R. Baumvol, IEEE Trans. Plasma Sci. 39(11), 3028–3029 (2011)ADSGoogle Scholar
  59. P.L. Ge, M.D. Bao, H.J. Zhang, K. You, X.P. Liu, Surf. Coat. Technol. 229, 146–150 (2013)Google Scholar
  60. V.A. Godyak, IEEE Trans. Plasma Sci. 34(3), 755–766 (2006)ADSGoogle Scholar
  61. V. Godyak, J. Phys. D Appl. Phys. 46, 283001 (2013)Google Scholar
  62. E. Grigore, C. Ruset, X. Li, H. Dong, Plasma Process. Polym. 6, S321–S325 (2009)Google Scholar
  63. J.T. Gudmundsson, N. Brenning, D. Lundin, U. Helmersson, J. Vac. Sci. Technol. A 30(3), 030801 (2012)Google Scholar
  64. G.J.M. Hagelaar, D.B. Mihailova, J. van Dijk, Analytical model of a longitudinal hollow cathode discharge. J. Phys. D Appl. Phys. 43, 465204 (2010)Google Scholar
  65. Z.J. Han, S. Yick, I. Levchenko, E. Tam, M.M.A. Yajadda, S. Kumar, P.J. Martin, S. Furman, K. Ostrikov, Controlled synthesis of a large fraction of metallic single-walled carbon nanotube and semiconducting carbon nanowire networks. Nanoscale 3(8), 3214–3220 (2011)ADSGoogle Scholar
  66. Z. J. Han, A. E. Rider, M. Ishaq et al., Carbon nanostructures for hard tissue engineering, RSC Advances 3(28), 11058–11072 (2013)Google Scholar
  67. R. Hatakeyama, Rev. Mod. Plasma Phys. 1, 7 (2017).  https://doi.org/10.1007/s41614-017-0009-y ADSCrossRefGoogle Scholar
  68. P. Helander, Rep. Prog. Phys. 77, 087001 (2014)ADSGoogle Scholar
  69. PEh Hovsepian, A.P. Ehiasarian, I. Petrov, Surf. Coat. Technol. 257, 38–47 (2014)Google Scholar
  70. M. Hundt, P. Sadler, I. Levchenko et al., Real-time monitoring of nucleation-growth cycle of carbon nanoparticles in acetylene plasmas. J. Appl. Phys. 109(12), 123305 (2011)ADSGoogle Scholar
  71. S. Ichimaru, Phase transitions, interparticle correlations, and elementary processes in dense plasmas. Rev. Mod. Plasma Phys. 1, 6 (2017).  https://doi.org/10.1007/s41614-017-0008-z ADSCrossRefGoogle Scholar
  72. M. V. Jacob, R. S. Rawat, B. Ouyang, K. Bazaka, D. S. Kumar, D. Taguchi, M. Iwamoto, R. Neupane, O. K. Varghese, Catalyst-free plasma enhanced growth of graphene from sustainable sources, Nano Letters 15(9), 5702–5708 (2015)ADSGoogle Scholar
  73. M. V. Jacob, D. Taguchi, M. Iwamoto, K. Bazaka, R. S. Rawat, Resistive switching in graphene-organic device: Charge transport properties of graphene-organic device through electric field induced optical second harmonic generation and charge modulation spectroscopy, Carbon 112, 111–116 (2017)Google Scholar
  74. J. Jin, H. Duan, X. Li, Vacuum 136, 112–120 (2017)ADSGoogle Scholar
  75. W.H. Kao, Y.L. Su, J.H. Horng, K.X. Zhang, J. Biomater. Appl. 31(2), 215–229 (2016)Google Scholar
  76. H. Kawasaki, T. Ohshima, Y. Yagyu, Y. Suda, Trans. Mater. Res. Soc. Japan 36(3), 459–498 (2011)Google Scholar
  77. H. Kawata, M. Yasuda, Y. Hirai, Jpn. J. Appl. Phys. 47(8), 6914–6916 (2008)ADSGoogle Scholar
  78. M.M. Kharkov, A.V. Kaziev, A.V. Tumarkin, V.E. Drobinin, T.V. Stepanova, A.A. Pisarev, I.O.P. Conf, Ser. J. Phys. Conf. Ser. 789, 012026 (2017)Google Scholar
  79. D.W. Kim, H.Y. Lee, S.J. Kyoung, H.S. Kim, Y.J. Sung, S.H. Chae, G.Y. Yeom, IEEE Trans. Plasma Sci. 32(3), 1362–1366 (2004)ADSGoogle Scholar
  80. T.H. Kim, et al., Plasma characteristics of inductively coupled plasma using dual-frequency antennas. Jpn. J. Appl. Phys. 52, 05EA02 (2013)Google Scholar
  81. H.B. Kim, H.C. Lee, K.N. Kim, S.K. Kang, G.Y. Yeom, J. Nanosci. Nanotechnol. 9(12), 7440–7445 (2009)Google Scholar
  82. D.R. Knapp, J. Phys. Conf. Ser. 591, 012018 (2015)Google Scholar
  83. V.I. Kolobov, A.S. Metel, J. Phys. D Appl. Phys. 48, 233001 (2015)ADSGoogle Scholar
  84. H. Kovaci, A.F. Yetim, Y.B. Bozkurt, A. Celik, Surf. Rev. Lett. 24(1), 1750005 (2017)ADSGoogle Scholar
  85. O.V. Krysina, N.N. Koval, I.V. Lopatin, V.V. Shugurov, S.S. Kovalsky, J. Phys. Conf. Ser. 669, 012032 (2016)Google Scholar
  86. S. Kumar, I. Levchenko, K. K. Ostrikov et al., Plasma-enabled, catalyst-free growth of carbon nanotubes on mechanically-written Si features with arbitrary shape, Carbon 50(1), 325–329 (2012)Google Scholar
  87. M.J. Kushner, J. Appl. Phys. 94(3), 1436–1447 (2003)ADSGoogle Scholar
  88. W. Lang, Adv. Mater. Res. 399–401, 2018–2025 (2012)Google Scholar
  89. K. Lemmer, Propulsion for CubeSats. Acta Astronaut. 134, 231–243 (2017)ADSGoogle Scholar
  90. Levchenko et al., IEEE Trans. Plasma Sci. 32, 2139 (2004a)ADSGoogle Scholar
  91. I. Levchenko, M. Romanov, O. Baranov, M. Keidar, Vacuum 72, 335–344 (2004b)ADSGoogle Scholar
  92. I. Levchenko, K.K. Ostrikov, J. Zheng, X. Li, M. Keidar, K.B.K. Teo, Scalable graphene production: perspectives and challenges of plasma applications. Nanoscale 8, 10511 (2016a)ADSGoogle Scholar
  93. I. Levchenko, M. Keidar, U. Cvelbar, D. Mariotti, A. Mai-Prochnow, J. Fang, K. Ostrikov, Novel biomaterials: plasma-enabled nanostructures and functions. J. Phys. D Appl. Phys. 49(27), 273001 (2016b)Google Scholar
  94. I. Levchenko, I.I. Beilis, M. Keidar, Nanoscaled metamaterial as an advanced heat pump and cooling media. Adv. Mater. Technol. 1(2), 1600008 (2016c)Google Scholar
  95. I. Levchenko, K. Bazaka, Y. Ding, Y. Raitses, S. Mazouffre, T. Henning, P. J. Klar, S. Shinohara, J. Schein, L. Garrigues, M. Kim, D. Lev, F. Taccogna, R. W. Boswell, C. Charles, H. Koizumi, S. Yan, C. Scharlemann, M. Keidar, S. Xu, Space micropropulsion systems for cubesats and small satellites: from proximate targets to furthermost frontiers. Appl. Phys. Rev. 5, 011104 (2018a).  https://doi.org/10.1063/1.5007734 ADSCrossRefGoogle Scholar
  96. I. Levchenko, K. Bazaka, M. Keidar, S. Xu, J. Fang, Hierarchical multicomponent inorganic metamaterials: intrinsically driven self-assembly at the nanoscale. Adv. Mater. 30, 1702226 (2018b)Google Scholar
  97. I. Levchenko, S. Xu, G. Teel, D. Mariotti, M.L.R. Walker, M. Keidar, Smart nanomaterials in space: recent progress in electric propulsion systems for small satellites. Nat. Commun. 9, 879 (2018c).  https://doi.org/10.1038/s41467-017-02269-7 ADSCrossRefGoogle Scholar
  98. Y. Li, L. Wang, D. Zhang, L. Shen, J. Alloy. Compd. 497, 285–289 (2010a)Google Scholar
  99. Y. Li, L. Wang, L. Shen, D. Zhang, C. Wang, Surf. Coat. Technol. 204, 2337–2342 (2010b)Google Scholar
  100. X. Li, Q. Chen, L. Sang, L. Yang, Z. Liu, Z. Wang, Phys. Proc. 18, 100–106 (2011)ADSGoogle Scholar
  101. M.A. Lieberman, A.J. Lichtenberg, Principles of Plasma Discharges for Materials Processing (Wiley, New York, 2005)Google Scholar
  102. M.A. Lieberman, J.P. Booth, P. Chabert, J.M. Rax, M.M. Turner, Plasma Sources Sci. Technol. 11, 283 (2002)ADSGoogle Scholar
  103. B. Liu, Energy Proc. 38, 289–296 (2013)Google Scholar
  104. Q. Luo, S. Yang, K.E. Cooke, Surf. Coat. Technol. 236, 13–21 (2013)Google Scholar
  105. C. Luo, Q. Fu, C. Pan, Sci. Rep. 5, 9062 (2015)ADSGoogle Scholar
  106. A.P.A. Manfridini, C. Godoy, J.C.A.-B. Wilson, M.V. Auad, Surf. Coat. Technol. 260, 168–178 (2014)Google Scholar
  107. L. Martinu, D. Poitras, J. Vac. Sci. Technol. A 18(6), 2619–2645 (2000)ADSGoogle Scholar
  108. S. Mazouffre, Electric propulsion for satellites and spacecraft: established technologies and novel approaches. Plasma Sources Sci. Technol. 25(3), 033002 (2016)ADSGoogle Scholar
  109. T. Meziani, P. Colpo, F. Rossi, Plasma Sources Sci. Technol. 10, 276–283 (2001)ADSGoogle Scholar
  110. A.I. Morozov, V.V. Savelyev, in Review of Plasma Physics, ed. by B.B. Kadomtsev, Shafranov (Consultant Bureau, New York, 2000)Google Scholar
  111. J. Musil, RSC Adv. 5, 60482–60495 (2015)Google Scholar
  112. K. Ostrikov, I. Levchenko, U. Cvelbar, M. Sunkara, M. Mozetic, Nanoscale 2, 2012–2027 (2010)ADSGoogle Scholar
  113. K. Ostrikov, E.C. Neyts, M. Meyyappan, Adv. Phys. 62(2), 113 (2013)ADSGoogle Scholar
  114. A. Perret, P. Chabert, J.-P. Booth, J. Jolly, J. Guillon, Ph Auvray, Appl. Phys. Lett. 83(2), 243–245 (2003)ADSGoogle Scholar
  115. A. Perret, P. Chabert, J. Jolly, J.-P. Booth, Appl. Phys. Lett. 86, 021501 (2005)ADSGoogle Scholar
  116. E.J.D.M. Pillaca, M. Ueda, K.G. Kostov, H. Reuther, Appl. Surf. Sci. 258(24), 9564–9569 (2012)ADSGoogle Scholar
  117. M.T. Rahman, M.N.A. Dewan, Plasma Sci. Tech. 17(2), 141–146 (2015)ADSGoogle Scholar
  118. K. Ramazanov, V. Budilov, R. Vafin, I. Zolotov, XXVI Int. Symp. on Discharges and Electrical Insulation in Vacuum, 2014Google Scholar
  119. S. Rauf, K. Bera, K. Collins, Plasma Sources Sci. Technol. 19, 015014 (2010)ADSGoogle Scholar
  120. S.E. Rodil, J.J. Olaya, S. Muhl, B. Bhushan, G. Wei, Surf. Coat. Technol. 201, 6117–6121 (2007)Google Scholar
  121. Y. Sakurai, T. Osaga, IEEE Trans. Plasma Sci. 39(11 Pt. 1), 2550–2551 (2011)ADSGoogle Scholar
  122. P.K. Schelling, L. Shi, K.E. Goodson, Mater. Today 8(6), 30–35 (2005)Google Scholar
  123. M.K. Sharma, B.K. Saikia, S. Bujarbarua, Surf. Coat. Technol. 203, 229–233 (2008)Google Scholar
  124. D. She, W. Yue, Z. Fu, Y. Gu, C. Wang, J. Liu, Mater. Des. 49, 392–399 (2013)Google Scholar
  125. L. Shen, L. Wang, J.J. Xu, Surf. Coat. Technol. 228, S456–S459 (2013)Google Scholar
  126. A.S. Shigarev, L.P. Dmitrieva, Met. Sci. Heat Treat. 20, 213 (1978)ADSGoogle Scholar
  127. T. Shimizu, Y. Teranishi, K. Morikawa, H. Komiya, T. Watanabe, H. Nagasaka, M. Yang, Thin Solid Films 581, 39–47 (2015)ADSGoogle Scholar
  128. C.-S. Shin, D. Gall, Y.-W. Kim, N. Hellgren, I. Petrov, J.E. Greene, J. Appl. Phys. 92(9), 5084 (2002)ADSGoogle Scholar
  129. R.L. Stenzel, J.M. Urrutia, Phys. Rev. Lett. 114, 205005 (2015)ADSGoogle Scholar
  130. J.M. Stillahn, J. Zhang, E.R. Fisher, J. Vac. Sci. Technol. A 29(1), 011014 (2011)Google Scholar
  131. J. Sun, W.P. Tong, H. Zhang, L. Zuo, Z.B. Wang, Surf. Coat. Technol. 213, 247–252 (2012)Google Scholar
  132. D. Sung, V. Volynets, W. Hwang, Y. Sung, S. Lee, M. Choi, G.-H. Kim, J. Vac. Sci. Technol. A 30(6), 061301 (2012)Google Scholar
  133. H. Takikawa, H. Tanoue, IEEE Trans. Plasma Sci. 35(4), 992–999 (2007)ADSGoogle Scholar
  134. H. Tanaka, K. Ishikawa, M. Mizuno et al., State of the art in medical applications using non-thermal atmospheric pressure plasma. Rev. Mod. Plasma Phys. 1, 3 (2017).  https://doi.org/10.1007/s41614-017-0004-3 ADSCrossRefGoogle Scholar
  135. M. Tang, J. Ge, J. Wong, Z. Peng Ling, T. Dippell, Z. Zhang, M. Huber, M. Doerr, O. Hohn, P. Wohlfart, A.G. Aberle, T. Mueller, Phys. Status Solidi 9(1), 47–52 (2014)Google Scholar
  136. K.I. Thomassen, Microwave plasma density measurements. J. Appl. Phys. 36, 3642 (1965)ADSGoogle Scholar
  137. W.P. Tong, H. Zhang, J. Sun, L. Zuo, J.C. He, J. Mater. Res. 25(11), 2082–2085 (2010)ADSGoogle Scholar
  138. Y. Tong, T.-W. Guo, J. Wang, H.-F. Liang, Q. Mi, Adv. Mater. Res. 217–218, 1050–1055 (2011)Google Scholar
  139. T. Uchida, S. Hamaguchi, J. Phys. D Appl. Phys. 41, 083001 (2008)Google Scholar
  140. K. Vafin, K.N. Ramazanov, V.V. Budilov, XXVth Int. Symp. on Discharges and Electrical Insulation in Vacuum, Tomsk, 2012Google Scholar
  141. A.V. Vasenkov, M.J. Kushner, J. Appl. Phys. 95(3), 834–845 (2004)ADSGoogle Scholar
  142. K.V. Vavilin, E.A. Kralkina, P.A. Nekludova, A.K. Petrov, A.M. Nikonov, V.B. Pavlov, A.A. Airapetov, V.V. Odinokov, G.Ya. Pavlov, V.A. Sologub, J. Phys. Conf. Ser. 669, 012033 (2016)Google Scholar
  143. M. Volatier, D. Duchesne, R. Morandotti, R. Ares, V. Aimez, Nanotechnology 21, 134014 (2010)ADSGoogle Scholar
  144. A. von Stechowa, O. Grulke, T. Klinger, Characterization of neutral loop discharges in the VINETA device. Eur. Phys. J. D 66, 64 (2012)ADSGoogle Scholar
  145. S. Wang, W. Cai, J. Li, W. Wei, J. Hu, Mater. Lett. 105, 47–49 (2013)Google Scholar
  146. Z. Wang, D. Zhang, P. Ke, X. Liu, A. Wang, J. Mater. Sci. Technol. 31(1), 37–42 (2015)Google Scholar
  147. R. Wei, C. Rincon, T.L. Booker, J.H. Arps, Surf. Coat. Technol. 188–189, 691–696 (2004)Google Scholar
  148. R. Wei, R.C. Benn, C.V. Cooper, Plasma Process. Polym. 4, S700–S706 (2007)Google Scholar
  149. S. Wilczek, J. Trieschmann, J. Schulze, E. Schuengel, R.P. Brinkmann, A. Derzsi, I. Korolov, Z. Donko, T. Mussenbrock, Plasma Sources Sci. Technol. 24, 024002 (2015)ADSGoogle Scholar
  150. T. Yamada, M. Ishihara, J. Kim, M. Hasegawa, S. Iijima, Carbon 50, 2615 (2012)Google Scholar
  151. S. Yang, Y. Zhang, H.-Y. Wang, S. Wang, W. Jiang, Plasma Sources Sci. Technol. 26, 065011 (2017)ADSGoogle Scholar
  152. A. Yazdani, M.R. Soltanieh, H. Aghajani, S. Rastegari, Vacuum 86, 131–139 (2011)ADSGoogle Scholar
  153. M.A.P. Yazdi, F. Lomello, J. Wang, F. Sanchette, Z. Dong, T. White, Y. Wouters, F. Schuster, A. Billard, Vacuum 109, 43–51 (2014)ADSGoogle Scholar
  154. S. Yick, I. Levchenko, S. Kumar, Z.J. Han, M.M.A. Yajadda, K. Ostrikov, Current control in the magnetron systems for nanofabrication: a comparison. IEEE Trans. Plasma Sci. 40(4), 1094–1097 (2012)ADSGoogle Scholar
  155. S. Yick, A. Mai-Prochnow, I. Levchenko, J. Fang, M.K. Bull, M. Bradbury, A.B. Murphy, K. Ostrikov, RSC Adv. 5, 5142–5148 (2015)Google Scholar
  156. Z. Zhang, X. Li, H. Dong, Acta Mater. 86, 341–351 (2015)Google Scholar
  157. Y. Zhang, C. Charles, R. Boswell, Cross-field transport of electrons at the magnetic throat in an annular plasma reactor. J. Phys. D Appl. Phys. 50, 015205 (2016)ADSGoogle Scholar
  158. Y. Zhao, B. Yu, L. Dong, H. Du, J. Xiao, Surf. Coat. Technol. 210, 90–96 (2012)Google Scholar

Copyright information

© Division of Plasma Physics, Association of Asia Pacific Physical Societies 2018

Authors and Affiliations

  1. 1.National Aerospace UniversityKharkovUkraine
  2. 2.Department for Surface Engineering and OptoelectronicsJožef Stefan InstituteLjubljanaSlovenia
  3. 3.Plasma Sources and Applications Centre, NIENanyang Technological UniversitySingaporeSingapore
  4. 4.School of Chemistry, Physics, and Mechanical EngineeringQueensland University of TechnologyBrisbaneAustralia
  5. 5.CSIRO-QUT Joint Sustainable Processes and Devices LaboratoryLindfieldAustralia
  6. 6.College of Chemistry and Chemical EngineeringChongqing University of TechnologyChongqingPeople’s Republic of China

Personalised recommendations