Advertisement

Improvement in the 3D shower shapes description in the Monte Carlo simulation for a lead-scintillating fiber electromagnetic calorimeter

  • Xue-Qiang Wang
  • Zu-Hao LiEmail author
  • Zhi-Cheng Tang
  • Cheng Zhang
  • Fei Zhao
  • Ze-Tong Sun
  • Feng-Ze Zhang
  • Jia-Yu Hu
  • Guo-Ming Chen
  • He-Sheng Chen
Original Paper
  • 18 Downloads

Abstract

Background

The lead-scintillating fiber electromagnetic calorimeter (ECAL) of the Alpha Magnetic Spectrometer measures the energy of positrons/electrons and separates them from hadrons. The electromagnetic shower shapes from Monte Carlo (MC) simulation and data show disagreement.

Purpose

Tuning the MC to make the shower shapes from MC and data agree with each other.

Methods

The tuning is based on a 3D electromagnetic shower model.

Results

After tuning, the electromagnetic shower shapes are well described by MC up to TeV. As a result, the output of ECAL electron/proton separation estimator, ECAL BDT, shows that MC and data are in good agreement. The proton rejection power of the ECAL BDT trained with MC electron samples is improved by a factor of 5 at \(\sim \,800\,\hbox {GeV}\) compared to the one trained with data.

Keywords

Electromagnetic calorimeter Monte Carlo simulation 3D shower shape Electron proton separation estimator 

Notes

Acknowledgements

We thank Dr. Weiwei Xu for useful discussions on the 3D shower model.

References

  1. 1.
    S. Ting, The alpha magnetic spectrometer on the international space station. Nucl. Phys. B Proc. Suppl. 243–244, 12–24 (2013)ADSCrossRefGoogle Scholar
  2. 2.
    S. Agostinelli et al., GEANT4-a simulation toolkit. Nucl. Instrum. Methods Phys. Res. A 506, 250–303 (2003)ADSCrossRefGoogle Scholar
  3. 3.
    J. Allison et al., Recent developments in GEANT4. Nucl. Instrum. Methods Phys. Res. A 835, 186–225 (2016)ADSCrossRefGoogle Scholar
  4. 4.
    M. Aguilar et al., First result from the alpha magnetic spectrometer on the international space station: precision measurement of the positron fraction in primary cosmic rays of 0.5–350 GeV. Phys. Rev. Lett. 110, 141102 (2013)Google Scholar
  5. 5.
    A. Kounine et al., Precision measurement of 0.5 GeV–3 TeV electrons and positrons using the AMS electromagnetic calorimeter. Nucl. Instrum. Methods Phys. Res. A 869, 110–117 (2017)ADSCrossRefGoogle Scholar
  6. 6.
    L. Accardo et al., High statistics measurement of the positron fraction in primary cosmic rays of 0.5–500 GeV with the Alpha Magnetic Spectrometer on the International Space Station. Phys. Rev. Lett. 113, 121101 (2014)Google Scholar
  7. 7.
    M. Aguilar et al., Electron and positron fluxes in primary cosmic rays measured with the alpha magnetic spectrometer on the international space station. Phys. Rev. Lett. 113, 121102 (2014)ADSCrossRefGoogle Scholar
  8. 8.
    M. Aguilar et al., Precision measurement of the \((e^++e^-)\) flux in primary cosmic rays from 0.5 GeV to 1 TeV with the Alpha Magnetic Spectrometer on the International Space Station. Phys. Rev. Lett. 113, 221102 (2014)ADSCrossRefGoogle Scholar
  9. 9.
    C. Adloff et al., The AMS-02 lead-scintillating fibers electromagnetic calorimeter. Nucl. Instrum. Methods Phys. Res. A 714, 147–154 (2013)ADSCrossRefGoogle Scholar
  10. 10.
    Z. Li et al., Correction of PMT position effect for a lead-scintillating fiber electromagnetic calorimeter. Chin. Phys. C 37(02), 026201 (2013)ADSCrossRefGoogle Scholar
  11. 11.
    Z. Li et al., Angular reconstruction of a lead scintillating-fiber sandwiched electromagnetic calorimeter. Chin. Phys. C 38(05), 056203 (2014)ADSCrossRefGoogle Scholar
  12. 12.
    C. Zhang et al., Dead cell and side leakage correction for a lead-scintillating fiber electromagnetic calorimeter. Chin. Phys. C 40(09), 096204 (2016)ADSCrossRefGoogle Scholar
  13. 13.
    E. Longo, I. Sestili, Monte Carlo calculation of photon-initiated electromagnetic showers in lead glass. Nucl. Instrum. Methods 128, 283–307 (1975)ADSCrossRefGoogle Scholar
  14. 14.
    G. Grindhammer, S. Peters, The parameterized simulation of electromagnetic showers in homogeneous and sampling calorimeters (2000). arXiv:hep-ex/0001020
  15. 15.
    S. Zhang et al., Improvements on the particle identification with dead cell and side leakage corrections for the electromagnetic calorimeter of the Alpha Magnetic Spectrometer. Radiat. Detect. Technol. Methods 2, 33 (2018)CrossRefGoogle Scholar
  16. 16.
    M. Aguilar et al., Towards understanding the origin of cosmic-ray positrons. Phys. Rev. Lett. 122, 041102 (2019)ADSCrossRefGoogle Scholar

Copyright information

© Institute of High Energy Physics, Chinese Academy of Sciences; Nuclear Electronics and Nuclear Detection Society 2019

Authors and Affiliations

  • Xue-Qiang Wang
    • 1
    • 2
  • Zu-Hao Li
    • 1
    • 2
    Email author
  • Zhi-Cheng Tang
    • 1
  • Cheng Zhang
    • 1
  • Fei Zhao
    • 1
    • 2
  • Ze-Tong Sun
    • 1
    • 2
  • Feng-Ze Zhang
    • 1
    • 2
  • Jia-Yu Hu
    • 1
    • 2
  • Guo-Ming Chen
    • 1
    • 2
  • He-Sheng Chen
    • 1
    • 2
  1. 1.Key Laboratory of Particle Astrophysics, Institute of High Energy PhysicsChinese Academy of SciencesBeijingChina
  2. 2.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations