Advertisement

Design of a high-sampling-rate electronic module for array-detector positron annihilation lifetime measurements

  • Jiale Cai
  • Daowu Li
  • Yingjie Wang
  • Zhiming Zhang
  • Peilin Wang
  • Haohui Tang
  • Baoyi Wang
  • Xingzhong Cao
  • Fuyan Liu
  • Long WeiEmail author
Original Paper
  • 21 Downloads

Abstract

Introduction

In this study, a high-time-resolution electronic module with a high channel density and low power consumption was designed for the measurement of the multi-detector array positron annihilation lifetimes. This electronic module consisted of 32 input channels, and each channel provided a high sampling rate up to 5.12 GSPS based on a Domino Ring Sampler 4 (DRS4) chip. Compared to the high-speed flash analog-digital converter (FADC), DRS4 chip has a higher channel density with an affordable lower price and power consumption.

Methods

The developed electronic module was also capable of real-time data analysis for directly extracting the time information of input signals at the data acquisition site, thereby significantly decreasing the data rate. The digital constant fraction discriminator (DCFD) algorithm was implemented in the field programmable gate array (FPGA) for performing the time pick-up.

Results

The coincidence time resolution of the electronic module was measured, and the test results revealed a value of 26 ps. A prototypical 16-pixel detector module of the multi-detector system was evaluated using this electronic module, and the coincidence time resolution of the prototypical module was 411.84 ps.

Conclusions

The electronic module was confirmed to satisfy the severe requirements of the multi-array-detector positron annihilation lifetime measurement system. It was also suitable for other high-time-resolution, high-channel-density, cost-effective, and low-power-consumption applications.

Keywords

Digital constant fraction discriminator FPGA DRS4 Positron lifetime 

Notes

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China (Grant Nos. 11475206, 11675191 and 11475197).

References

  1. 1.
    P.A.M. Dirac, On the annihilation of electrons and protons. Math. Proc. Camb. Philos. Soc. 26(3), 15 (1930)zbMATHGoogle Scholar
  2. 2.
    A. Vehanen, K. Saarinen, P. Hautojärvi, H. Huomo, Profiling multilayer structures with monoenergetic positrons. Phys. Rev. B Condens. Matter 35(10), 4606–4610 (1987)ADSCrossRefGoogle Scholar
  3. 3.
    S.J. Smith, G.M.A. Hyder, W.E. Kauppila, C.K. Kwan, T.S. Stein, Evidence for absorption effects in positron elastic scattering by argon. Phys. Rev. Lett. 64(11), 1227–1230 (1990)ADSCrossRefGoogle Scholar
  4. 4.
    R.G. Greaves, M.D. Tinkle, C.M. Surko, Creation and uses of positron plasmas. Phys. Plasmas 1(5), 1439–1446 (1994)ADSCrossRefGoogle Scholar
  5. 5.
    B.L. Brown, M. Leventhal, A.P.J. Mills, D.W. Gidley, Positron annihilation in a simulated low-density galactic environment. Phys. Rev. Lett. 53(24), 2347–2350 (1984)ADSCrossRefGoogle Scholar
  6. 6.
    S.Y. Tong, H. Huang,. Guo, Low-energy electron and low-energy positron holography. Phys. Rev. Lett. 69(25), 3654–3657 (1992)ADSCrossRefGoogle Scholar
  7. 7.
    A. Weiss, R. Mayer, M. Jibaly, C. Lei, D. Mehl, K.G. Lynn, Auger-electron emission resulting from the annihilation of core electrons with low-energy positrons. Phys. Rev. Lett. 61(19), 2245–2248 (1988)ADSCrossRefGoogle Scholar
  8. 8.
    H.K.M. Tanaka, T. Kurihara, A.P.J. Mills, Positronium time of flight measurements of an open-pored spin-on low-k mesoporous film. J. Phys. Condens. Matter 18(37), 8581 (2006)ADSCrossRefGoogle Scholar
  9. 9.
    A. Zecca, R.S. Brusa, M.P. Duartenaia, G.P. Karwasz, J. Paridaens, A. Piazza, A pulsed positron microbeam. Europhys. Lett. 29(8), 617 (1995)ADSCrossRefGoogle Scholar
  10. 10.
    J. Liu, D. Li, Z. Zhang, B. Wang, T. Zhang, J. Hao, Using a LaBr 3: Ce scintillator for positron annihilation lifetime spectroscopy. Chin. Phys. C 36(4), 380–383 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    L. Daowu, L. Junhui, Z. Zhiming, W. Baoyi, Z. Tianbao, W. Long, A compact positron annihilation lifetime spectrometer. Chin. Phys. C 35(1), 100–103 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    L. Wei, Z.M. Zhang, C.X. Ma, C.L. Zhou, B.Y. Wang, T.B. Chang, A high-resolution BaF2 positron lifetime spectrometer with high counting rate. Mater. Sci. Forum 445–446(1), 516–518 (2004)CrossRefGoogle Scholar
  13. 13.
    B.Y. Wang, P. Kuang, F.Y. Liu, Z.J. Han, X.Z. Cao, P. Zhang, Measurement of positron annihilation lifetimes for positron burst by multi-detector array. Nucl. Instrum. Methods Phys. Res. Sect. A 885, 119–123 (2018)ADSCrossRefGoogle Scholar
  14. 14.
    O. Klemperer, On the annihilation radiation of the positron. Math. Proc. Camb. Philos. Soc. 30(3), 347–354 (1934)ADSCrossRefGoogle Scholar
  15. 15.
  16. 16.
    M. Bitossi, R. Paoletti, D. Tescaro, Ultra-fast sampling and data acquisition using the DRS4 waveform digitizer. IEEE Trans. Nucl. Sci. 63, 2309–2316 (2016)ADSCrossRefGoogle Scholar
  17. 17.
    J. Wang, L. Zhao, C. Feng, S. Liu, Q. An, Evaluation of a fast pulse sampling module with switched-capacitor arrays. IEEE Trans. Nucl. Sci. 59(5), 2435–2443 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    DRS4 Evaluation Board Rev. 5.1 manual. https://www.psi.ch/drs/DocumentationEN/manual_rev51.pdf
  19. 19.
    D.A. Gedcke, W.J. Mcdonald, A constant fraction of pulse height trigger for optimum time resolution. Nucl. Instrum. Methods 55(2), 377–380 (1967)ADSCrossRefGoogle Scholar
  20. 20.
    D.A. Gedcke, W.J. Mcdonald, Design of the constant fraction of pulse height trigger for optimum time resolution. Nucl. Instrum. Methods 58(2), 253–260 (1968)ADSCrossRefGoogle Scholar
  21. 21.
    A. Fallu-Labruyere, H. Tan, W. Hennig, W.K. Warburton, Time resolution studies using digital constant fraction discrimination. Nucl. Instrum. Methods Phys. Res. A 579(1), 247–251 (2007)ADSCrossRefGoogle Scholar

Copyright information

© Institute of High Energy Physics, Chinese Academy of Sciences; Nuclear Electronics and Nuclear Detection Society 2019

Authors and Affiliations

  • Jiale Cai
    • 1
    • 2
    • 3
  • Daowu Li
    • 1
    • 2
  • Yingjie Wang
    • 1
    • 2
  • Zhiming Zhang
    • 1
    • 2
  • Peilin Wang
    • 1
    • 2
  • Haohui Tang
    • 1
    • 2
  • Baoyi Wang
    • 2
  • Xingzhong Cao
    • 2
  • Fuyan Liu
    • 2
    • 3
  • Long Wei
    • 1
    • 2
    • 3
    Email author
  1. 1.Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy PhysicsChinese Academy of SciencesBeijingChina
  2. 2.Institute of High Energy PhysicsChinese Academy of SciencesBeijingChina
  3. 3.School of Nuclear Science and TechnologyUniversity of Chinese Academy of SciencesBeijingChina

Personalised recommendations