Advertisement

Modeling minimum detectable activity as a function of detector speed

  • James Falkner
  • Craig MariannoEmail author
Original Paper
  • 13 Downloads

Abstract

Purpose

A radiation detector’s sensitivity is important when designing survey plans. A measure of sensitivity is minimum detectable activity (MDA) which is the lowest amount of activity required for a signal to be distinguished above background. It has been known for some time that the efficiency of a moving detector can be improved by slowing the speed of travel. The Multi-Agency Radiation Survey and Site Investigation Manual describes but does not quantify this effect. Decreased efficiency at higher speeds results in higher MDAs and thus less sensitive detectors. The purpose of this research is to specifically define the relationship between detector MDA and speed.

Methods

Python was employed to calculate solid angle from equations developed by Masket and MCNP6.1 simulations were used to determine detection efficiency for a moving detector. Using these results efficiency as a function of detector travel speed was fit to a modified four-parameter logistic function (M4PL).

Results

The result of this work is a well defined relationship that can be used to predict MDA as a function of speed. The relationship can also be used by operators to determine the optimum speed needed to meet a predefined MDA.

Conclusion

Understanding this relationship between detector speed and efficiency will improve detector performance in remediation efforts and national security search operations. The M4PL function developed in this research allows optimizing remediation and wide-area radiation survey activities by setting maximum survey speed to meet a predetermined MDA.

Keywords

Counting efficiency Detection limits Monte Carlo Operational topics 

Notes

Compliance with ethical standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

References

  1. 1.
    E.W. Abelquist, W.S. Brown, Estimating minimum detectable concentrations achievable while scanning building surfaces and land areas. Health Phys. 76(1), 3–10 (1999).  https://doi.org/10.1097/00004032-199901000-00002 CrossRefGoogle Scholar
  2. 2.
    T. Alecksen, R. Whicker, Scan MDCs for GPS-based gamma radiation systems. Health Phys. 111(2), S123–S132 (2016).  https://doi.org/10.1097/hp.0000000000000517 CrossRefGoogle Scholar
  3. 3.
    B. Altshuler, B. Pasternack, Statistical measures of the lower limit of detection of a radioactivity counter. Health Phys. 9(3), 293–298 (1963).  https://doi.org/10.1097/00004032-196303000-00005 CrossRefGoogle Scholar
  4. 4.
    B. Ayaz-Maierhafer, T.A. DeVol, Determination of absolute detection efficiencies for detectors of interest in homeland security. Nucl. Instr. Methods Phys. Res. A 579(1), 410–413 (2007).  https://doi.org/10.1016/j.nima.2007.04.143 ADSCrossRefGoogle Scholar
  5. 5.
    L.-E. De Geer, Currie detection limits in gamma-ray spectroscopy. Appl. Radiat. Isot. 61(2–3), 151–160 (2004).  https://doi.org/10.1016/j.apradiso.2004.03.037 CrossRefGoogle Scholar
  6. 6.
    T. Goorley, M. James, T. Booth, F. Brown, J. Bull, L.J. Cox, J. Durkee, J. Elson, M. Fensin, R.A. Forster, J. Hendricks, H.G. Hughes, R. Johns, B. Kiedrowski, R. Martz, S. Mashnik, G. McKinney, D. Pelowitz, R. Prael, J. Sweezy, L. Waters, T. Wilcox, T. Zukaitis, Initial MCNP6 release overview. Nucl. Technol. 180(3), 298–315 (2017).  https://doi.org/10.13182/NT11-135 CrossRefGoogle Scholar
  7. 7.
    I. Holl, E. Lorenz, G. Mageras, A measurement of the light yield of common inorganic scintillators. IEEE Trans. Nucl. Sci. 35(1), 105–109 (1988).  https://doi.org/10.1109/23.12684 ADSCrossRefGoogle Scholar
  8. 8.
    G. Knoll, Radiation Detection and Measurement, 4th edn. (Wiley, New York, 2010)Google Scholar
  9. 9.
    G.H. Kramer, L.C. Burns, S. Guerriere, Monte carlo simulation of a scanning detector whole body counter and the effect of bomab phantom size on the calibration. Health Phys. 83(4), 526–533 (2002).  https://doi.org/10.1097/00004032-200210000-00011 CrossRefGoogle Scholar
  10. 10.
    E. Lepel, B. Geelhood, W. Hensley, W. Quam, A field-deployable, aircraft-mounted sensor for the environmental survey of radionuclides. J. Radioanal. Nucl. Chem. 233(1–2), 211b–215 (1998).  https://doi.org/10.1007/BF02389674 CrossRefGoogle Scholar
  11. 11.
    C. Marianno, Signal processing and its effect on scanning efficiencies for a field instrument for detecting low-energy radiation. Health Phys. 109(1), 78–83 (2015).  https://doi.org/10.1097/HP.0000000000000298 CrossRefGoogle Scholar
  12. 12.
    C. Marianno, K. Higley, T. Palmer, Theoretical efficiencies for a FIDLER scanning hot particle contamination. Radiat. Protect. Manag. 17, 31–34 (2000)Google Scholar
  13. 13.
    A. Masket, R. Macklin, H. Schmitt, Tables of solid angles and activations. Department of Energy. Technical Information Service Extension, Oak Ridge, ORNL-2170 ed (1956)Google Scholar
  14. 14.
    R. Pöllänen, H. Toivonen, K. Peräjärvi, T. Karhunen, T. Ilander, J. Lehtinen, K. Rintala, T. Katajainen, J. Niemela, M. Juusela, Radiation surveillance using an unmanned aerial vehicle. Appl. Radiat. Isot. 67(2), 340–344 (2009).  https://doi.org/10.1016/j.apradiso.2008.10.008 CrossRefGoogle Scholar
  15. 15.
    G. Rossum, Python 3.6.1 reference manual. Python.org [online] (2017). https://docs.python.org/release/3.6.1/. Accessed 23 May 2018
  16. 16.
    R.C. Runkle, T.M. Mercier, K.K. Anderson, D.K. Carlson, Point source detection and characterization for vehicle radiation portal monitors. IEEE Trans. Nucl. Sci. 52(6), 3020–3025 (2005).  https://doi.org/10.1109/TNS.2005.862910 ADSCrossRefGoogle Scholar
  17. 17.
    E. Sakai, Recent measurements on scintillator-photodetector systems. IEEE Trans. Nucl. Sci. NS-34(1), 418–422 (1987).  https://doi.org/10.1109/tns.1987.4337375 ADSCrossRefGoogle Scholar
  18. 18.
    G.S. Sittampalam, N.P. Coussens, K. Brimacombe, et al. (eds.), Assay Guidance Manual [Internet] (Eli Lilly & Company and the National Center for Advancing Translational Sciences, Bethesda, 2004)Google Scholar
  19. 19.
    U.S. Nuclear Regulatory Commission, Multi-agency radiation survey and site investigation manual (MARSSIM), revision 1. U.S. NRC, Washington; NUREG-1575 (2000)Google Scholar
  20. 20.
    G. Warner, R. Oliver, A whole-body counter for clinical measurements utilizing the shadow shield technique. Phys. Med. Biol. 11(1), 83 (1966).  https://doi.org/10.1088/0031-9155/11/1/307 CrossRefGoogle Scholar
  21. 21.
    R. Whicker, P. Cartier, J. Cain, K. Milmine, M. Griffin, Radiological site characterizations: gamma surveys, gamma/226ra correlations, and related spatial analysis techniques. Health Phys. 95(5), S180–S189 (2008).  https://doi.org/10.1097/01.hp.0000324206.39683.c4 CrossRefGoogle Scholar

Copyright information

© Institute of High Energy Physics, Chinese Academy of Sciences; Nuclear Electronics and Nuclear Detection Society 2019

Authors and Affiliations

  1. 1.US NavyNaval Health Clinic CharlestonGoose CreekUSA
  2. 2.Texas A&M UniversityCollege StationUSA

Personalised recommendations