Advertisement

Prototype of an array SiPM-based scintillator Compton camera for radioactive materials detection

  • Ji-Peng Zhang
  • Xiu-zuo Liang
  • Jia-le Cai
  • Yi Liu
  • Xian-chao Huang
  • Dao-wu Li
  • Xiong Xiao
  • Xiao-yu Pang
  • Zhi-ming Zhang
  • Long Wei
  • Lei ShuaiEmail author
Original Paper
  • 28 Downloads

Abstract

Purpose

The Compton camera, which visualizes the distribution of gamma-ray sources based on the kinematics of Compton scattering, has advantage of wide field of view, broad range of energy and compact structure.

Methods

In this study, we proposed a prototype of Compton camera, which included array silicon photomultiplier (SiPM)-based position-sensitive detectors, data acquisition (DAQ) system and image reconstruction system. The detectors were composed of Ce-doped Gd3Al2Ga3O12 scintillator arrays and pixel Si-PM arrays. In DAQ system, symmetric charge division circuit, impedance bridge circuit and the delay coincidence algorithm were designed to record coincidence events. Simple back-projection algorithm and list-mode maximum likelihood expectation maximization algorithm were adopted for image reconstruction. The coordinate of longitude and latitude was used for image fusion.

Results

The performance of this Compton camera prototype system was evaluated. The results indicated that this system was able to locate a 137Cs point source within 20 s with the corresponding radiation dose of ~ 1.0 μSv/h. The angular resolution of point source was ~ 7° (FWHM), and the total energy resolution of 662 keV was 7.2%. Furthermore, we succeeded in separating two point sources of different energy [22Na (511 keV), 137Cs (662 keV)] in laboratory test.

Conclusions

This prototype of scintillator Compton camera offers capabilities for applications like source term investigation and radioactive materials detection.

Keywords

Compton imaging Scintillator Compton camera Silicon photomultipliers Image reconstruction 

Notes

Acknowledgements

This work is supported by the Instrument Developing Project of the Chinese Academy of Sciences Grant (No. 29201707) and the Key Research Program of Chinese Academy of Science Grant (ZDRW-CN-2018-101).

References

  1. 1.
    A.C. Zoglauer, First light for the next generation of Compton and pair telescopes. Ph.d. thesis, (Technische Universität München, 2005)Google Scholar
  2. 2.
    A. Kishimoto, J. Kataoka, T. Taya et al., First demonstration of multi-color 3-D in vivo imaging using ultra-compact Compton camera. Sci. Rep. 7, 1–7 (2017).  https://doi.org/10.1038/s41598-017-02377-w CrossRefGoogle Scholar
  3. 3.
    S. Mochizuki, J. Kataoka, L. Tagawa et al., First demonstration of aerial gamma-ray imaging using drone for prompt radiation survey in Fukushima. J. Instrum. 12, P11014 (2017).  https://doi.org/10.1088/1748-0221/12/11/P11014 CrossRefGoogle Scholar
  4. 4.
    V. Schönfelder, A. Hirner, K. Schneider, A telescope for soft gamma ray astronomy. Nucl. Instrum. Methods 107, 385–394 (1973).  https://doi.org/10.1016/0029-554X(73)90257-7 ADSCrossRefGoogle Scholar
  5. 5.
    R.W. Todd, J.M. Nightingale, D.B. Everett, A proposed γ camera. Nature 251, 132–134 (1974).  https://doi.org/10.1038/251132a0 ADSCrossRefGoogle Scholar
  6. 6.
    C.G. Wahl, W.R. Kaye, W. Wang et al., The Polaris-H imaging spectrometer. Nucl. Instrum. Methods Phys. Res. A 784, 377–381 (2015).  https://doi.org/10.1016/j.nima.2014.12.110 ADSCrossRefGoogle Scholar
  7. 7.
    L. Mihailescu, K.M. Vetter, M.T. Burks et al., SPEIR a Ge Compton camera. Nucl. Instrum. Methods Phys. Res. A 570, 89–100 (2007).  https://doi.org/10.1016/j.nima.2006.09.111 ADSCrossRefGoogle Scholar
  8. 8.
    W. Lee, T. Lee, 4π FOV compact Compton camera for nuclear material investigations. Nucl. Instrum. Methods Phys. Res. A 652, 33–36 (2011).  https://doi.org/10.1016/j.nima.2011.01.140 ADSCrossRefGoogle Scholar
  9. 9.
    W. Lee, A. Bolotnikov, T. Lee et al., Mini Compton camera based on an array of virtual Frisch-grid CdZnTe detectors. IEEE Trans. Nucl. Sci. 63, 259–265 (2016).  https://doi.org/10.1109/TNS.2015.2514120 ADSCrossRefGoogle Scholar
  10. 10.
    H. Seo, C.H. Kim, J.H. Park et al., Multitracing capability of double-scattering Compton imager with NaI (Tl) scintillator absorber. IEEE Trans. Nucl. Sci. 57, 1420–1425 (2010).  https://doi.org/10.1109/TNS.2009.2035806 ADSCrossRefGoogle Scholar
  11. 11.
    J. Kataoka, A. Kishimoto, T. Nishiyama et al., Handy Compton camera using 3D position-sensitive scintillators coupled with large-area monolithic MPPC arrays. Nucl. Instrum. Methods Phys. Res. A 732, 403–407 (2013).  https://doi.org/10.1016/j.nima.2013.07.018 ADSCrossRefGoogle Scholar
  12. 12.
    C. Jackson, L. Wall, K. O’Neill, et al., Ultra-low noise and exceptional uniformity of SensL C-series SiPM sensors, in Proceedings of the SPIE 9359, Optical Components and Materials XII, 93591C (2015).  https://doi.org/10.1117/12.2076898
  13. 13.
    J. Iwanowska, L. Swiderski, T. Szczesniak et al., Performance of cerium-doped Gd3Al2Ga3O12 (GAGG: Ce) scintillator in gamma-ray spectrometry. Nucl. Instrum. Methods Phys. Res. A 712, 34–40 (2013).  https://doi.org/10.1016/j.nima.2013.01.064 ADSCrossRefGoogle Scholar
  14. 14.
    P.D. Olcott, J.A. Talcott, C.S. Levin et al., Compact readout electronics for position sensitive photomultiplier tubes. IEEE Trans. Nucl. Sci. 52, 21–27 (2005).  https://doi.org/10.1109/TNS.2004.843134 ADSCrossRefGoogle Scholar
  15. 15.
    V. Popov, S. Majewski, A.G. Weisenberger, et al., Analog readout system with charge division type output, in IEEE Nuclear Science symposium Conference Record, vol. 4, (2001), pp. 1937–1940.  https://doi.org/10.1109/nssmic.2001.1009203
  16. 16.
    Y. Liu, L. Shuai, J. Zhang et al., Design and evaluation of position sensitive detector based on GAGG: Ce crystal coupled with SiPM. At. Energy Sci. Technol. 52, 1487–1491 (2018).  https://doi.org/10.7538/yzk.2017.youxian.0810. (in chinese) CrossRefGoogle Scholar
  17. 17.
    A. Haefner, D. Gunter, R. Barnowski et al., A filtered back-projection algorithm for 4π Compton camera data. IEEE Trans. Nucl. Sci. 62, 1911–1917 (2015).  https://doi.org/10.1109/TNS.2015.2457436 ADSCrossRefGoogle Scholar
  18. 18.
    A. Haefner, D. Gunter, R. Barnowski, et al., A filtered back-projection algorithm for 4π Compton camera data, in IEEE Nuclear Science symposium Conference Record, vol. 62 (2015), pp. 1911–1917.  https://doi.org/10.1109/tns.2015.2457436

Copyright information

© Institute of High Energy Physics, Chinese Academy of Sciences; Nuclear Electronics and Nuclear Detection Society 2019

Authors and Affiliations

  • Ji-Peng Zhang
    • 1
    • 2
  • Xiu-zuo Liang
    • 1
    • 2
  • Jia-le Cai
    • 1
    • 2
  • Yi Liu
    • 1
  • Xian-chao Huang
    • 1
  • Dao-wu Li
    • 1
  • Xiong Xiao
    • 1
    • 2
  • Xiao-yu Pang
    • 1
    • 2
  • Zhi-ming Zhang
    • 1
  • Long Wei
    • 1
  • Lei Shuai
    • 1
    Email author
  1. 1.Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy PhysicsChinese Academy of SciencesBeijingChina
  2. 2.School of Nuclear Science and TechnologyUniversity of Chinese Academy of SciencesBeijingChina

Personalised recommendations