Advertisement

The effect of Nb2O5 on fast neutron removal cross section, optical, and structural properties of some calcium borate oxide glasses containing Bi3+ ions

  • H. A. SaudiEmail author
  • Hossam Mohamed Gomaa
Original Paper
  • 73 Downloads

Abstract

Background

In recent years, the preparation of transparent glass in the visible region has led to the development of radiation shielding materials with measuring structure and optical properties. Also, the study on the interaction of neutron radiation with matter is important in the field of radiation protection.

Purpose

Preparation of transparent calcium and bismuth borate oxide glasses containing Nb5+ ions can be used as a neutron radiation shield and determine refractive index with different methods for this glass.

Methods

Niobium bismuth borate glasses with composition 60B2O3–20CaO–(20 − x)Bi2O3xNb2O5, where (x is in mol%, 0 ≤ x ≤ 10), have been prepared using conventional melt-quenching technique; the structure of each sample was studied by XRD, FTIR, and UV spectra chart analysis.

Results

XRD and FTIR showed that all glass samples were highly homogeneous and had structured with short-range-order/amorphous solids. The refractive index of each sample was estimated by charts of UV–Vis and FTIR, in addition to an empirical method, and we obtained values very close to each other. The refractive index values are relatively high, so this glass can be used in nonlinear studies as well as luminescence characterization. The macroscopic fast neutron removal cross sections (ΣR/ρ) have calculated, for all samples, and the highest value was in sample containing 2.5% niobium pentoxide.

Conclusion

Bismuth borate glass containing a few niobium pentoxide can be used as a protective shield of neutrons.

Keywords

Oxide glasses Refractive index UV–Vis Borate glass Optical properties 

References

  1. 1.
    A. Pan, A. Ghosh, J. Non Cryst. Solids 271, 157–161 (2000)ADSCrossRefGoogle Scholar
  2. 2.
    C.E. Stone, A.C. Wright, R.N. Sinclair, S.A. Feller, M. Affatigato, D.L. Hogan, N.D. Nelson, C. Vira, Y.B. Dimitriev, E.M. Gattef, D. Ehrt, Phys. Chem. Glasses 41, 409–412 (2000)Google Scholar
  3. 3.
    C. Stehle, C. Vira, D. Vira, D. Hogan, S. Feller, M. Affatigato, Phys. Chem. Glasses 39, (2) (1998)Google Scholar
  4. 4.
    D.W. Hall, M.A. Newhouse, N.F. Borelli, W.H. Dumbaugh, D.L. Weidman, Appl. Phys. Lett. 54, 1293 (1989)ADSCrossRefGoogle Scholar
  5. 5.
    A. Agarwal et al., Radiat. Eff. Defects Solids 158(11–12), 793–801 (2003)ADSCrossRefGoogle Scholar
  6. 6.
    L.E. Alarcon et al., Appl. Surf. Sci. 254, 412–415 (2007)ADSCrossRefGoogle Scholar
  7. 7.
    E.A. Davis, N.F. Mott, Philos. Mag. 179, 903–922 (1970)ADSCrossRefGoogle Scholar
  8. 8.
    V. Dimitrov, T. Komatsu, Classification of simple oxides: a polarizability approach. J. Solid State Chem. 163(1), 100–112 (2002)ADSCrossRefGoogle Scholar
  9. 9.
    H.A. Saudi, Am. J. Phys. Appl. 4(6), 140–144 (2016).  https://doi.org/10.11648/j.ajpa.20160406.11 CrossRefGoogle Scholar
  10. 10.
    Heba A. Saudy et al., World J. Condens. Matter. Phys. 3, 9–13 (2013)ADSCrossRefGoogle Scholar
  11. 11.
    E. Yousef, M. Hotzel, C. Russel, J. Non Cryst. Solids 353, 333–338 (2007)ADSCrossRefGoogle Scholar
  12. 12.
    Yasser B. Saddeek et al., J. Non Cryst. Solids 454, 13–18 (2016)ADSCrossRefGoogle Scholar
  13. 13.
    P. Venkateswara Raoa et al., J. Optik 127, 2920–2923 (2016)CrossRefGoogle Scholar
  14. 14.
    L. Balachander et al., J. Sci. Asia 39, 278–283 (2013)CrossRefGoogle Scholar
  15. 15.
    Wallace D. Fragoso et al., J. Non Cryst. Solids 351, 3121–3126 (2005)ADSCrossRefGoogle Scholar
  16. 16.
    M.E. Thomas, W.J. Tropf, Infrared refractive index and thermo-optic coefficient measurement at APL. Johns Hopkins APL Tech. Dig. 19(3), 293–297 (1998)Google Scholar
  17. 17.
    Nirmal Kaur et al., J. Non Cryst. Solids 429, 153–163 (2015)ADSCrossRefGoogle Scholar
  18. 18.
    Ramesh Boda et al., J. Mater. Today Proc. 3, 1914–1922 (2015)CrossRefGoogle Scholar
  19. 19.
    E.C. Marquez et al., J. Phys. State Solid 191, 115–119 (2006)ADSCrossRefGoogle Scholar
  20. 20.
    Y.D. Yiannopoulos et al., J. Phys. Chem. Glasses 42(3), 164 (2001)Google Scholar
  21. 21.
    E. Davis and N. Mott, vol. 22, no. 179, pp. 0903–0922 (1970)Google Scholar
  22. 22.
    H.M. Gomaa, S.M. El Katlawy, Am. J. Mater. Synth. Process. 2(6), 94–96 (2017).  https://doi.org/10.11648/j.ajmsp.20170206.14 CrossRefGoogle Scholar
  23. 23.
    C.R. Kurkjian, J. Non Cryst. Solids 263–264, 207–212 (2000)ADSCrossRefGoogle Scholar
  24. 24.
    N. Kaur, A. Khanna, M. Gónzález-Barriuso, F. González, B. Chen, J. Non Cryst. Solids 429, 153–163 (2015)ADSCrossRefGoogle Scholar
  25. 25.
    H.A. Saudi, A.G. Mostafa, N. Sheta, S.U. El Kameesy, H.A. Sallam, Phys. B Condens. Matter. 406(21), 4000–4006 (2011)ADSCrossRefGoogle Scholar

Copyright information

© Institute of High Energy Physics, Chinese Academy of Sciences; Nuclear Electronics and Nuclear Detection Society and Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Physics Department, Faculty of ScienceAl-Azhar University (Girls Branch)Nasr City, CairoEgypt
  2. 2.Optical Branch, High Institute of Optics TechnologyCairoEgypt

Personalised recommendations