Advertisement

The superconducting magnet for ADS injection-I

  • Xiang-chen YangEmail author
  • Quan-ling Peng
  • Da Cheng
  • Feng-yu Xu
  • Yuan Chen
  • An-bin Chen
Original Paper
  • 146 Downloads

Abstract

Purpose

As the world energetic demand is increasing day by day, the development of nuclear energy is of great necessity. However, the development is followed by a lot of tough questions like the management and storage of the nuclear waste. ADS, which is short for the accelerator-driven sub-critical system, may be a good choice because it can provide an efficient transmutations of nuclear waste. Many countries have carried out some research in related areas like the USA, Japan and China.

The superconducting magnet system

The cryomodule I (CM1) for China’s ADS Injection-I had been designed, fabricated and online tested. The CM1 is mainly composed of superconducting spoke cavities, beam position monitors, cryogenic system and superconducting magnets. The superconducting magnet system, which includes the magnet and current leads, is aimed at focusing and correcting the proton beams.

Conclusion

Seven superconducting magnets and current leads for CM1 are successfully designed and manufactured. Structural strength meets design specifications, the field meets the design demands, and the online test shows that the magnets can work in a rather stable state.

In this paper, the detailed design and installation of the superconducting magnets are presented.

Keywords

CM1 Superconducting magnet Current leads 

PACS

29.20.Ej 85.25.Am 84.71.Ba 

References

  1. 1.
    A.F. Zeller, J.C. Dekamp, A. Facco et al., IEEE Trans. Appl. Supercond. 12(1), 329–331 (2002)ADSGoogle Scholar
  2. 2.
    F. Yan, Z. Li, C. Meng, Chin. Phys. C 38(2), 82–90 (2013)Google Scholar
  3. 3.
    W.L. Zhan, Bull. Chin. Acad. Sci 27(3), 375–381 (2012)Google Scholar
  4. 4.
    L. Han, S. Peng, J. Dai, Chin. Phys. C 36(8), 761–764 (2013)Google Scholar
  5. 5.
    Q.L. Peng, B. Wang, Y. Chen et al., Chin. Phys. C 38(3), 61–65 (2013)Google Scholar
  6. 6.
    A. Kalimov, G. Moritz, A.F. Zeller, IEEE Trans. Appl. Supercond. 14(2), 271–274 (2004)ADSGoogle Scholar
  7. 7.
    S. Kurz, S. Russenschuck, Electr. Eng. 82(1), 1–10 (1999)Google Scholar
  8. 8.
    Q.L. Peng, F.Y. Xu, T. Wang, Nucl. Instrum. Methods Phys. Res. 764(1), 220–226 (2014)ADSGoogle Scholar
  9. 9.
    M. Leghissa, N. Prölss. US, US 7741944 B2 [P] (20-10)Google Scholar
  10. 10.
    C. Meuris, Cryogenics 53(53), 17–24 (2013)ADSGoogle Scholar
  11. 11.
    S. Ito, T. Miki, M. Hamada et al., IEEE Trans. Appl. Supercond. 14(2), 1715–1718 (2004)ADSGoogle Scholar
  12. 12.
    A. Barrarino, IEEE Trans. Appl. Supercond. 12(1), 1275–1280 (2002)ADSGoogle Scholar
  13. 13.
    W.M. Joseph, H. Brueck et al., in AIP Conference Proceedings, 2012, pp. 565–572Google Scholar
  14. 14.
    B. Wang, Q.L. Peng, X.C. Yang et al., Chin. Phys. C 38(6), 93–96 (2013)Google Scholar
  15. 15.
    W.N. Martin, Science 93(211), 119–121 (1967)Google Scholar
  16. 16.
    K. Chang, B. Zhao, Y. Lei et al., Cryogenics 25(78), 45–62 (2012)Google Scholar
  17. 17.
    V.R. Romanovskii, IEEE Trans. Appl. Supercond. 4(2), 1302–1305 (2004)ADSGoogle Scholar
  18. 18.
    X.C. Yang, Q.L. Peng, F.Y. Xu, Chin. Phys. C 38(6), 93–96 (2013)Google Scholar
  19. 19.
    L.D. Innocenti, Sol. Obs. Tech. Interpret. 67(9), 71 (1992)Google Scholar
  20. 20.
    K. Kawano, K. Hamada, K. Okuno et al., Teion Kogaku 41(3), 105–112 (2006)Google Scholar

Copyright information

© Institute of High Energy Physics, Chinese Academy of Sciences; Nuclear Electronics and Nuclear Detection Society and Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Institute of High Energy PhysicsChinese Academy of SciencesBeijingChina
  2. 2.Harbin Institute of TechnologyHarbinChina

Personalised recommendations