Advertisement

Determination of gamma ray spectrometry efficiency for the attenuation coefficients of some bismuth borate glasses by MCNP and (ISOCS) techniques

  • Ahmed Y. El-HaseibEmail author
  • Z. Ahmed
  • Yasser B. Saddeek
Original Paper

Abstract

Background

Radiation detection has been a main interest for researchers as all kind of produced particles in atomic and subatomic physics based on the measurement systems so-called detector. Detection efficiency is one of the main parameters in detection system besides many other different parameters of the detector. The detector in experimental physics is an instrument that converts radiation energy into an electrical signal, and this is achieved basically by either ionization or excitation. The choice for any type of a detector (gas-filled, scintillation or semiconductor) for any application depends upon the X-ray of gamma energy range of interest. A working model is therefore developed which is capable of describing the overall NaI(Tl) detection efficiency as a function of several known parameters.

Purpose

The attenuation coefficients for the bismuth borate glasses with different concentrations were measured using gamma spectroscopy technique. The numerical absolute efficiency calibration of a detector can be determined by In-Situ Object Calibration Software (ISOCS) and Monte Carlo Neutral Particle version 5 (MCNP5) techniques which does not require any calibration standards or reference materials.

Methods

By using the ISOCS and MCNP5 methodologies, the full energy peak efficiency of a scintillator detector (3“X3” NaI (Tl)) exposed to Co-60 and Cs-137 gamma ray sources with average accuracy range 0.126–1.224% for the used samples can be detected. The used materials are ternary and are located between the detector and the source to determine the attenuation coefficients for these samples by using the calculated full energy peak efficiencies of a detector.

Results

The average accuracy ranged from − 1.808 to 1.960% for linear attenuation coefficient (\(\mu \)), while it ranged from − 1.999 to 1.888% and from − 1.924 to 1.960% for half value layer (HVL) and mass linear attenuation coefficient (\(\mu _m\)), respectively.

Conclusion

The calculated values of the absolute full energy peak efficiency have been used to determine the attenuation coefficients of materials with different concentrations and different densities. The results proved the validation of ISOCS and MCNP to determine the absolute full energy peak efficiency of the detector which can be used to determine the attenuation coefficients for the simulated samples and it is a good tool to be used when experimental methods are not available.

Keywords

Detection efficiency Sodium iodine (NaI) Linear attenuation coefficient \((\mu )\) Mass linear attenuation coefficient \((\mu _{\mathrm{m}})\) Half-value layer (HVL) 

References

  1. 1.
    D.J. Wagenaar, S. Chowdhury, J.C. Engdahl, D.D. Burckhardt, Nucl. Inst. Methods Phys. Res. A 505, 586 (2003)ADSCrossRefGoogle Scholar
  2. 2.
    M. Moszynski, Nucl. Inst. Methods A 505, 101 (2003)ADSCrossRefGoogle Scholar
  3. 3.
    M. Ahmadi, M. Rabbani, P. Mir Ahmadpour, J. Appl. Chem. Res. (JACR) 3, 55 (2009)Google Scholar
  4. 4.
    J. Kaneko, M. Katagiri, Y. Ikeda, T. Nishitani, in Proceedings of the 12th Workshop on Radiation Detectors and Their Uses (KEK, Tsukuba (1998), p. 98Google Scholar
  5. 5.
    G.F. Knoll, Radiation Detection and Measurement (Wiley, New York, 2000)Google Scholar
  6. 6.
    J. Eberth, J. Simpson, Prog. Part Nucl. Phys. 60, 283 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    A. Kadum, B. Dahmani, Int. J. Technol. Enhanc. Emerg. Eng. Res. 2, 2347 (2014)Google Scholar
  8. 8.
    C.M. Salgado, L.E.B. Brandão, R. Schirru, C.M.N.A. Pereira, C.C. Conti, Prog. Nucl. Energy 59, p19 (2012)CrossRefGoogle Scholar
  9. 9.
    A.B. Kadhem, A.N. Mohammed, Eng. Tech. J. 28(5), 1001 (2010)Google Scholar
  10. 10.
    I. Akkurta, H.O. Tekinb, A. Mesbahi, in International Conference of Computational and Experimental Science and Engineering, Kemer, Antalya, Turkey, vol. 128 (2015)Google Scholar
  11. 11.
    A.A. Mowlavi, R. Izadi Najafabadi, R. Koohi Faygh, Int. J. Pure Appl. Phys. 1, 129 (2005)Google Scholar
  12. 12.
    R. Venkataraman, F. Bronson, V. Atrashkevich, M. Field, B.M. Young, J. Radioanal. Nucl. Chem. 264, 213 (2005)CrossRefGoogle Scholar
  13. 13.
    V. Nizhnik, E. Braverman, A. Lebrun, F. Rorif, IAEA-CN-184/047, IAEA, Vienna, AustriaGoogle Scholar
  14. 14.
    J. Wachter, K. Meyer, Sean Stanfield and Robert Ceo WM2014 Conference, March 2–6, Arizona, USA, Phoenix (2014)Google Scholar
  15. 15.
    I. Akkurt, H. Akyildirim, B. Mavi, S. Kilincarslan, C. Basyigit, Ann. Nucl. Energy 37–7, 910 (2010a)CrossRefGoogle Scholar
  16. 16.
    I. Akkurt, H. Akyildirim, B. Mavi, S. Kilincarslan, C. Basyigit, Prog. Nucl. Energy 52, 620 (2010b)CrossRefGoogle Scholar
  17. 17.
    N. Damla, U. Cevik, Al Kobya, A. Celik, N. Celik, R. Van Grieken, J. Hazard. Mater. 176, 644 (2010)CrossRefGoogle Scholar
  18. 18.
    G. Eduardo, L. Alfredo, Héctor René Vega-Carrillo, Nucl. Technol. 168(2), p399 (2009)CrossRefGoogle Scholar
  19. 19.
    M. Kurudirek, I. Turkmen, Y. Ozdemir, Radiat. Phys. Chem. 78, p751 (2009)Google Scholar
  20. 20.
    K.S. Mann, M. Kurudirek, G.S. Sidhu, Appl. Radiat. Isot. 70, 681 (2012)CrossRefGoogle Scholar
  21. 21.
    K.S. Mann, S.Gurdeeps Sidhu, Ann. Nucl. Energy 40, 241 (2012)CrossRefGoogle Scholar
  22. 22.
    K.S. Mann, T. Korkut, Ann. Nucl. Energy 51, 81 (2013)CrossRefGoogle Scholar
  23. 23.
    I. Turkmen, Y. Özdemir, M. Kurudirek, F. Demir, Ö. Simsek, Demirbog. Ann. Nucl. Energy 35, 937 (2008)Google Scholar
  24. 24.
    H. Doweidar, Yasser B. Saddeek, J. Non-Cryst. Solids 355,p, 348 (2009)ADSCrossRefGoogle Scholar
  25. 25.
    X-5 Monte Carlo Team, MCNP—A General Monte Carlo N-Particle Transport Code, Version 5 (2003)Google Scholar
  26. 26.
    H.A. Saudi, A.G. Mostafa, N. Sheta, S.U.El. Kameesy, H.A. Sallam, Phys. B: Condens. Matter 406, 4001 (2011)Google Scholar

Copyright information

© Institute of High Energy Physics, Chinese Academy of Sciences; Nuclear Electronics and Nuclear Detection Society and Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Ahmed Y. El-Haseib
    • 1
    Email author
  • Z. Ahmed
    • 2
  • Yasser B. Saddeek
    • 3
  1. 1.Radiation Safety DepartmentEgyptian Nuclear and Radiological Regulatory Authority (ENRRA)Nasr City, CairoEgypt
  2. 2.Nuclear Safeguards and Physical Protection DepartmentEgyptian Nuclear and Radiological Regulatory Authority (ENRRA)Nasr City, CairoEgypt
  3. 3.Physics Department, Faculty of ScienceAl-Azhar UniversityAssiutEgypt

Personalised recommendations