Influence of energy bandwidth of pink beam on small angle X-ray scattering

  • Shanfeng Wang
  • Yaxiang Liang
  • Bingjie Wang
  • Weiwei Dong
  • Lingfei Hu
  • Qun Ouyang
  • Peng LiuEmail author
Original Paper



Compared with the traditional monochromatic synchrotron radiation beam, a pink beam is a quasi-monochromatic beam which can be obtained by screening a harmonic of the undulator. The energy bandwidth (\(\Delta E{/}E\)) of a pink beam is about \(10^{-2}\). Despite the intensity gain from the quasi-monochromatic beam, the decrease in the energy resolution will lead the collected data to be smeared.


To study the influence of the energy bandwidth on the small angle X-ray scattering (SAXS) by experiments and verify the feasibility of SAXS with a pink beam.


Firstly, the influence of different energy bandwidths on SAXS has been studied by simulation and experiment. Then, TEM tests have been performed and compared with the experimental results.


It has been shown that the scattering curves deviate slightly from the traditional monochromatic ones. This deviation does not influence the data processing for the maximum deviation of the results is just less than 2%. In return, the gain in the intensity (one to two orders of magnitude) makes the pink beam very important for the time-resolved SAXS. Further, the results of TEM and SAXS have shown an excellent agreement.


This work proves that the pink beam could be used for SAXS directly without a desmearing procedure. Benefiting from the increase in the beam intensity, the exposure time can be greatly shortened, thus enhancing the utilization efficiency of the synchrotron radiation.


Small angle X-ray scattering (SAXS) Pink beam Adjustable energy bandwidth Smeared effect 



This work was supported by a grant from the National Key R&D Plan of China (Grant No. 2016YFA0401300).


  1. 1.
    P. Debye, A.M. Bueche, J. Appl. Phys. A 20(6), 518 (1949)ADSCrossRefGoogle Scholar
  2. 2.
    G. Porod, Small Angle X-ray Scattering (Academic Press, London, 1982), pp. 17–51Google Scholar
  3. 3.
    J.S. Pedersen, Adv. Colloid Interface Sci. A 70, 171 (1997)CrossRefGoogle Scholar
  4. 4.
    D. Schneidman-Duhovny, S.J. Kim, A. Sali, BMC Struct. Biol. A 12, 17 (2012)CrossRefGoogle Scholar
  5. 5.
    Z.-H. Li, Chin. Phys. C A 37(10), 108002 (2013)ADSCrossRefGoogle Scholar
  6. 6.
    S. Bratos et al., J. Synchrotron Radiat. A 21(Pt 1), 177 (2014)CrossRefGoogle Scholar
  7. 7.
    M. Rivers, Conference on Developments in X-Ray Tomography X. A, vol. 9967 (2016).
  8. 8.
    O. Bilsel, C.R. Matthews, Curr. Opin. Struct. Biol. A 16(1), 86 (2006)CrossRefGoogle Scholar
  9. 9.
    M. Bagge-Hansen et al., J. Appl. Phys. A 117(24), 245902 (2015)ADSCrossRefGoogle Scholar
  10. 10.
    R.L. Gustavsen et al., J. Appl. Phys. A 121(10), 105902 (2017)ADSCrossRefGoogle Scholar
  11. 11.
    R. Takahashi, T. Narayanan, T. Sato, J. Phys. Chem. Lett. A 8(4), 737 (2017)CrossRefGoogle Scholar
  12. 12.
    T.M. Willey et al., AIP Conference Proceedings, vol. 1793 (2017), p. 030012.
  13. 13.
    W. Wang et al., J. Appl. Crystallogr. A 48(6), 1935 (2015)CrossRefGoogle Scholar
  14. 14.
    B.R. Pauw, J. Phys. Condens. Matter. A 26(23), 239501 (2014)CrossRefGoogle Scholar
  15. 15.
    B.R. Pauw et al., J. Appl. Crystallogr. A 50(6), 1800 (2017)CrossRefGoogle Scholar
  16. 16.
    S. Chen, S.-N. Luo, J. Synchrotron Radiat. A 25(2), 496–504 (2018)CrossRefGoogle Scholar
  17. 17.
    E. Bergbäck Knudsen et al., J. Appl. Cryst. A 46(3), 679 (2013)CrossRefGoogle Scholar
  18. 18.
    D.I. Svergun, J. Appl. Cryst. A 25, 495 (1992)CrossRefGoogle Scholar
  19. 19.
    H.D. Mertens, D.I. Svergun, J. Struct. Biol. A 172(1), 128 (2010)CrossRefGoogle Scholar
  20. 20.
    O. Glatter, R. Klein, P. Lindner, Neutrons, X-ray and Light: Scattering Methods Applied to Soft Condensed Matter, 1st edn. (Elsevier, Amsterdam, 2002), pp. 391–420Google Scholar
  21. 21.
    A. Guinier, G. Fournet, Small Angle Scattering of X-Rays (Wiley, New York, 1955)zbMATHGoogle Scholar
  22. 22.
    K. O’grady, A. Bradbury, J. Megn. Megn. Mater. A 39, 91 (1983)ADSCrossRefGoogle Scholar
  23. 23.
    M. Bonini, E. Fratini, P. Baglioni, Mater. Sci. Eng. C A 27(5–8), 1377 (2007)CrossRefGoogle Scholar
  24. 24.
    B.R. Pauw, C. Kastner, A.F. Thunemann, J. Appl. Crystallogr. A 50(Pt 5), 1280 (2017)CrossRefGoogle Scholar
  25. 25.
    S.M. Sedlak, L.K. Bruetzel, J. Lipfert, J. Appl. Crystallogr. A 50(Pt 2), 621 (2017)CrossRefGoogle Scholar
  26. 26.
    J.S. Pedersen, D. Posselt, K. Mortensen, J. Appl. Crystallogr. A 23, 321 (1990)CrossRefGoogle Scholar
  27. 27.
    P.V. Konarev et al., J. Appl. Crystallogr. A 36, 1277 (2003)CrossRefGoogle Scholar
  28. 28.
    W. Szczerba et al., J. Appl. Crystallogr. A 50(Pt 2), 481 (2017)CrossRefGoogle Scholar

Copyright information

© Institute of High Energy Physics, Chinese Academy of Sciences; Nuclear Electronics and Nuclear Detection Society and Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Shanfeng Wang
    • 1
    • 2
  • Yaxiang Liang
    • 1
  • Bingjie Wang
    • 1
    • 3
  • Weiwei Dong
    • 1
    • 2
  • Lingfei Hu
    • 1
  • Qun Ouyang
    • 1
  • Peng Liu
    • 1
    Email author
  1. 1.Beijing Synchrotron Radiation Facility, Institute of High Energy PhysicsChinese Academy of SciencesBeijingPeople’s Republic of China
  2. 2.University of Chinese Academy of SciencesBeijingPeople’s Republic of China
  3. 3.Zhengzhou UniversityZhengzhouPeople’s Republic of China

Personalised recommendations