Advertisement

Lasers in Dental Science

, Volume 2, Issue 1, pp 43–51 | Cite as

The antibacterial effect of the combined Er,Cr:YSGG and 940 nm diode laser therapy in treatment of periodontitis: a pilot study

  • C. CiurescuEmail author
  • L. Vanweersch
  • R. Franzen
  • N. Gutknecht
Original Article
  • 456 Downloads

Abstract

Aim

The aim of the study was to accurately assess the antibacterial effect of the combined Er,Cr:YSGG and InGaAsP 940 nm laser therapy on nine pathogenic bacteria in the treatment of periodontitis.

Materials and method

Fifty-six patients were selected for this pilot study. Five patients were excluded, whereas 51 of them completed the study. The patients were randomly allocated to either the combined 2780 nm Er,Cr:YSGG (Waterlase, Biolase) and 940 nm InGaAsP diode laser (EPIC, Biolase) therapy, adjunct to scaling and root planning (SRP) (experimental group), or to scaling and root planning alone (control group). The quantitative and qualitative analysis of the total number of bacteria and nine specific germs was performed using quantitative real-time polymerase chain reaction.

Results

The total bacterial load inside the periodontal pockets was reduced both for the laser plus SRP and for the SRP alone group at the 1-month and 6-month follow-ups (p < 0.05). The laser therapy group showed a more significant bacterial reduction than the control group at the 1-month and 6-month follow-ups. The germ number reduction was statistically strongly significant for the total number of germs and for eight out of nine analyzed bacteria.

Conclusions

The present study suggests that a combined Er,Cr:YSGG 2780 nm and diode InGaAsP 940 nm laser therapy added to the nonsurgical periodontal treatment brings an important benefit in bacterial reduction and stands as a reliable alternative to antibiotic prescriptions in periodontal treatment. The positive changes are also reflected in significant improvement of clinical periodontal parameters. The results suggest that newly formed bacterial microbiome inside the sulcus appears to be more beneficial, durable, and stable in the lased group.

Keywords

Periodontitis Diode laser Er,Cr:YSGG Laser therapy 2780 nm laser 940 nm laser 

Notes

Funding

This research was done under the support of Krondent Dental Clinic. No other funding was accessed for this study.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Before starting this research, ethical approval of the Ethical Committee of Krondent Dental Clinic was obtained: approval no. 101E /30.11.2015. All patients had signed a consent form at the moment they were selected for this study.

References

  1. 1.
    Demmer R, Papapanou P (2010) Epidemiologic patterns of chronic and aggressive periodontitis. Periodontol 2000 53(1):28–44.  https://doi.org/10.1111/j.1600-0757.2009.00326.x CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Teles R, Teles F, Frias-Lopez J, Paster B, Haffajee A (2013) Lessons learned und unlearned in periodontal microbiology. Periodontol 62(1):95–162.  https://doi.org/10.1111/prd.12010 CrossRefGoogle Scholar
  3. 3.
    Lappin-Scott HM, Bass C (2001) Biofilm formation: attachment, growth, and detachment of microbes from surface. Am J Infect Control 29(4):250–251.  https://doi.org/10.1067/mic.2001.115674 CrossRefPubMedGoogle Scholar
  4. 4.
    Haffajee AD, Patel M, Socransky SS (2008) Microbiological changes associated with four different periodontal therapies for the treatment of chronic periodontitis. Oral Microbiol Immunol 23(2):148–157.  https://doi.org/10.1111/j.1399-302X.2007.00403.x CrossRefPubMedGoogle Scholar
  5. 5.
    Heitz-Mayfield LJ, Trombelli L, Heitz F, Needleman I, Moles D (2002) A systematic review of the effect of surgical debridement vs non-surgical debridement for the treatment of chronic periodontitis. J Clin Periodontol 29(Suppl 3):92–102.  https://doi.org/10.1034/j.1600-051X.29.s3.5.x CrossRefPubMedGoogle Scholar
  6. 6.
    Darveau RP (2010) Periodontitis: a polymicrobial disruption of host homeostasis. Nat Rev Microb 8(7):481–490.  https://doi.org/10.1038/nrmicro2337 CrossRefGoogle Scholar
  7. 7.
    Suzuki N, Yoneda M, Hirofuji T (2013) Mixed red-complex bacterial infection in periodontitis. Int J Dent 587279. Published online 2013 Mar 6.  https://doi.org/10.1155/2013/587279
  8. 8.
    Bodet C, Chandad F, Grenier D (2007) Pathogenic potential of Porphyromonas gingivalis, Treponema denticola and Tannarella forsythia, the red bacterial complex associated with periodontitis. Pathol Biol (Paris) 55(3–4):154–162.  https://doi.org/10.1016/j.patbio.2006.07.045 CrossRefGoogle Scholar
  9. 9.
    Johnson JD, Chen R, Lenton PA, Zhang G, Hinrichs JE, Rudney JD (2008) Persistence of extracrevicular bacterial reservoirs after treatment of aggressive periodontitis. J Clin Periodontol 79(12):2305–2312.  https://doi.org/10.1902/jop.2008.080254 CrossRefGoogle Scholar
  10. 10.
    Martelli FS, Fanti E, Rosati C, Martelli M, Bacci G, Martelli ML, Medico E (2016) Long-term efficacy of microbiology driven periodontal laser assisted therapy. Eur J Clin Microbiol Dis 35(3):423–431.  https://doi.org/10.1007/s10096-015-2555-y CrossRefGoogle Scholar
  11. 11.
    Al-Falaki R, Hughes FJ, Wadia R (2016) Minimally invasive treatment of infrabony periodontal defects using dual-wavelength laser therapy. Int Sch Res Notices 25(2):131–139Google Scholar
  12. 12.
    Gojkov-Vukelic M, Hadzic S, Dedic A, Konjhodzic R, Beslagic E (2013) Application of a diode laser in the reduction of targeted periodontal pathogens. Acta Inform Med 21(4):237–240.  https://doi.org/10.5455/aim.2013.21.237-240 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Gutknecht N, Van Betteray C, Ozturan S, Vanweersch L, Franzen R (2015) Laser supported reduction of specific microorganisms in the periodontal pocket with the aid of an Er,Cr:YSGG laser: a pilot study. Sci World J 450258.  https://doi.org/10.1155/2015/450258
  14. 14.
    Crispino A, Figliuzzi MM, Iovane C, DelGiudice T, Lomnano S, Pacifico D, Fortunato L, Del Giudice R (2015) Effectiveness of a diode laser in addition to non-surgical periodontal therapy: study of intervention. Anm Sromatologica (Roma) 6(1):15–20 Published online May 2015Google Scholar
  15. 15.
    Cobb CM (2006) Lasers in periodontics:a review of the literature. J Periodontol 77(4):545–564.  https://doi.org/10.1902/jop.2006.050417 CrossRefPubMedGoogle Scholar
  16. 16.
    Euzebio Alves VT, de Andrade AK, Toaliar JM, Conde MC, Zezell DM, Cai S, Pannuti CM, De Micheli G (2013) Clinical and microbiological evaluation of high intensity diode laser adjutant to non-surgical periodontal treatment: a 6-month clinical trial. Clin Oral Investig 17(1):87–95.  https://doi.org/10.1007/s00784-012-0703-7 CrossRefPubMedGoogle Scholar
  17. 17.
    Caruso U, Nastri L, Piccolomini R, d’Ercole S, Mazza C, Guida L (2008) Use of diode laser 980 nm as an adjunctive therapy in the treatment of chronic periodontitis. A randomized controlled clinical trial. New Microbiol 31(4):513–518PubMedGoogle Scholar
  18. 18.
    Cugini MA, Haffajee AD, Smith C, Kent RL Jr, Socransky SS (2000) The effect of scaling and root planing on the clinical and microbiological parameters of periodontal diseases: 12-month results. J Clin Periodontol 27(1):30–36.  https://doi.org/10.1034/j.1600-051x.2000.027001030.x CrossRefPubMedGoogle Scholar
  19. 19.
    Van Steenbergen TJ, Timmerman MF, Mikx FH, de Quincey G, van der Weijden GA, van der Velden U, de Graaff J (1996) Discrepancy between culture and DNA probe analysis for the detection of periodontal bacteria. J Clin Periodontol 23(10):955–959.  https://doi.org/10.1111/j.1600-051X.1996.tb00518.x CrossRefPubMedGoogle Scholar
  20. 20.
    Tomasi C, Leyland AH, Wennstrom JL (2007) Factors influencing the outcome of non-surgical periodontal treatment: a multilevel approach. J Clin Periodontol 34(8):682–690.  https://doi.org/10.1111/j.1600-051X.2007.01111.x CrossRefPubMedGoogle Scholar
  21. 21.
    Ximenez-Fyvie LA, Haffajee AD, Som S, Thompson M, Torresyap G, Socransky SS (2000) The effect of repeated professional supragingival plaque removal on the composition of the supra- and subgingival microbiota. J Clin Periodontol 27(9):637–647.  https://doi.org/10.1034/j.1600-051x.2000.027009637.x CrossRefPubMedGoogle Scholar
  22. 22.
    Paolantonio M, D’Angelo M, Grassi RF, Perinetti G, Piccolomini R, Pizzo G, Annunziata M, D’Archivio D, D’Ercole S, Nardi G, Guida L (2008) Clinical and microbiologic effects of subgingival controlled-release delivery of chlorhexidine chip in the treatment of periodontitis: a multicenter study. J Periodontol 79(2):271–282.  https://doi.org/10.1902/jop.2008.070308 CrossRefPubMedGoogle Scholar
  23. 23.
    Checchi L, Montevecchi M, Gatto MR, Trombelli L (2002) Retrospective study of tooth loss in 92 treated periodontal patients. J Clin Periodontol 29(7):651–656.  https://doi.org/10.1034/j.1600-051X.2002.290710.x CrossRefPubMedGoogle Scholar
  24. 24.
    Hellstrom MK, Ramberg P, Krok L, Lindhe J (1996) The effect of supragingival plaque control on the subgingival microflora in human periodontitis. J Clin Periodontol 23(10):934–940.  https://doi.org/10.1111/j.1600-051X.1996.tb00514.x CrossRefPubMedGoogle Scholar
  25. 25.
    Feres M, Haffajee AD, Allard K, Som S, Socransky SS (2001) Change in subgingival microbial profiles in adult periodontitis subjects receiving either systemically-administered amoxicillin or metronidazole. J Clin Periodontol 28(7):597–609.  https://doi.org/10.1034/j.1600-051x.2001.028007597.x CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • C. Ciurescu
    • 1
    Email author
  • L. Vanweersch
    • 2
  • R. Franzen
    • 2
  • N. Gutknecht
    • 2
  1. 1.Krondent Dental ClinicBrasovRomania
  2. 2.Department of Conservative Dentistry, Periodontology, and Preventive DentistryRWTH Aachen University HospitalAachenGermany

Personalised recommendations