Journal of Iberian Geology

, Volume 45, Issue 4, pp 553–563 | Cite as

Multidisciplinary study of the quaternary deposits of the Vila Nova de Gaia, NW Portugal, and its climate significance

  • H. RibeiroEmail author
  • A. Pinto de Jesus
  • J. Sanjurjo
  • I. Abreu
  • J. R. Vidal Romani
  • F. Noronha
Research Paper


Palynological, geochronological, and sedimentological analyses were conducted on samples from different depositional units of well-preserved marine, fluvial and palustrine sedimentary deposits from Vila Nova de Gaia located at the northwestern Portuguese coast. The studied deposits occur on two terraces: Terrace A—Lavadores (18 m to 33 m) and Terrace B—Canidelo (50 m). Chronological and sedimentological features allowed to date the deposits to the Upper Pleistocene until the last glacial period, being observed an evolution from a depositional setting in a marine intertidal zone, passing to a fluvial environment and ending in a palustrine/lagunar environment with possible periglacial influence. Pollen assemblages collected in the fluvial sedimentary horizons also suggested changes in the environmental conditions. A pollen content with good representation of arboreal species (Quercus, Pinus, Castanea, Fraxinus, Salix, Betula and Corylus), changed to a vegetation environment dominated by non-arboreal species, such as Poaceae, Plantago and Asteraceae. The top horizons, corresponding to a palustrine/lagunar environment, presented a pollen profile completely dominated by non-arboreal species, with minimal tree representation (Prunus, Quercus, Pinus and Castanea) which, combined with sedimentological characteristics may point to a more dry and cold climate than nowadays.


Quaternary OSL Sedimentary record Pollen 


En este estudio, se realizaron análisis palinológicos, geocronológicos y sedimentológicos en muestras de diferentes unidades de depósitos sedimentarios marinos, fluviales y palustres bien conservados de Vila Nova de Gaia, ubicados en el margen portugués del Atlántico norte. Los depósitos estudiados se sitúan en dos terrazas: Terraza A - Lavadores (de 8 a 33 m) y Terraza B - Canidelo (50 m). Las características cronológicas y sedimentológicas permitieron datar los depósitos desde el Pleistoceno superior hasta el último período glacial, observándose una evolución desde un entorno de deposición en una zona intermareal marina, pasando a un entorno fluvial y terminando en un entorno palustre/lagunar en un área con posible influencia periglacial. Los datos de polen recolectados de los horizontes sedimentarios fluviales también sugirieron cambios en las condiciones ambientales. Un contenido de polen con una buena representación del estrato arbóreo (Quercus, Pinus, Castanea, Fraxinus, Salix, Betula y Corylus), à cambiado a un entorno de vegetación dominado por especies no arbóreas, tales como Poaceae, Plantago y Asteraceae, y con mínima representación de árboles. Los horizontes superiores, correspondientes a un entorno palustre/lagunar, presentaron un perfil de polen completamente dominado por especies no arbóreas, indicando un entorno de vegetación abierta con una representación mínima de árboles (Prunus, Quercus, Pinus y Castanea) lo que, combinado con las características sedimentológicas, puede apuntar un clima más seco y frío que hoy en día.

Palabras clave

Pleistoceno OSL Registro sedimentario Polen 



This study was financed by COMPETE 2020 through the ICT (Institute of Earth Sciences) Project (UID/GEO/04683/2013) with POCI-01-0145 Reference-FEDER-007690. The first author benefited from a scholarship (SFRH/BDP/43604/2008) Financed by QREN-POPH and FCT. The authors would like to thank Cláudia Cruz for her valuable help with the map in Fig. 1. Anonymous reviewers for their helpful and constructive comments that in our opinion allowed improving the quality of the manuscript.


  1. Araújo, M. A., Gomes, A., Chamińe, H. I., Fonseca, P. E., Gama Pereira, L. C., & Pinto de Jesus, A. (2003). Regional geomorphology and geology from the Porto-Espinho sector (W Portugal): Morphostructural implications to Cenozoic sedimentary cover. Cadernos do Laboratorio Xeoloxico de Laxe,28, 79–105.Google Scholar
  2. Bird, E. (2008). Coastal geomorphology: An introduction (p. 436). USA: Wiley.Google Scholar
  3. Cabral, J. (1993). Neotectónica de Portugal Continental. Departamento de Geologia, PhD, Universidade de Lisboa, 435 p.Google Scholar
  4. Cabral, J. (1995). Neotectónica em Portugal Continental. Memórias Instituto Geológico Mineiro,31, 265.Google Scholar
  5. Cabral, M. C., Freitas, M. C., Andrade, C., & Cruces, A. (2006). Coastal evolution and Holocene ostracods in Melides lagoon (SW Portugal). Marine Micropaleontology,60(3), 181–204.Google Scholar
  6. Cabral, J., & Ribeiro, A. (1988). Carta Neotectónica de Portugal Continental, Esc. 1:1.000 000. Geological Survey of Portugal, Lisboa.Google Scholar
  7. Carvalhido, R. P., Pereira, D. I., Cunha, P. P., Buylaert, J. P., & Murray, A. S. (2014). Characterization and dating of coastal deposits of NW Portugal (Minho-Neiva area): A record of climate, eustasy and crustal uplift during the Quaternary. Quaternary International,328, 94–106.Google Scholar
  8. Costa, J. C., & Teixeira, C. (1957). Carta Geológica de Portugal na escala 1:50 000, Notícia Explicativa da Folha 9-C Porto. Lisboa: Serviços Geológicos de Portugal.Google Scholar
  9. Einsele, G. (2000): Sedimentary Basins. Evolution, Facies, and Sediment Budget. Springer-Verlag Berlin Heidelberg, Berlin, 792 p.Google Scholar
  10. Faegri, K., & Iverson, J. (1989). Textbook of pollen analyis. New Jersey: The Blackburn Press.Google Scholar
  11. El Kadiri, K., de Galdeano, C. S., Pedrera, A., Chalouan, A., Galindo-Zaldívar, J., Julià, R., et al. (2010). Eustatic and tectonic controls on Quaternary Ras Leona marine terraces (Strait of Gibraltar, northern Morocco). Quaternary Research,74(2), 277–288.Google Scholar
  12. Folk, R. L., & Ward, W. C. (1957). Brazos River bar (Texas); a study in the significance of grain size parameters. Journal of Sedimentary Research,27(1), 3–26.Google Scholar
  13. García-Amorena, I., Gómez Manzaneque, F., Rubiales, J. M., Granja, H. M., Soares de Carvalho, G., & Morla, C. (2007). The Late Quaternary coastal forests of western Iberia: A study of their macroremains. Palaeogeography Palaeoclimatology Palaeoecology,254(3–4), 448–461.Google Scholar
  14. García-Moreiras, I., Delgado, C., Martínez-Carreño, N., García-Gil, S., & Muñoz Sobrino, C. (2019). Climate and vegetation changes in coastal ecosystems during the Middle Pleniglacial and the early Holocene: Two multi-proxy, high-resolution records from Ría de Vigo (NW Iberia). Global and Planetary Change,176, 100–122.Google Scholar
  15. García-Moreiras, I., Sánchez, J. M., & Muñoz Sobrino, C. (2015). Modern pollen and non-pollen palynomorph assemblages of salt marsh and subtidal environments from the Ría de Vigo (NW Iberia). Review of Palaeobotany and Palynology,219, 157–171.Google Scholar
  16. Gómez-Orellana, L., Ramil-Rego, P., & Muñoz Sobrino, C. (2007). The Würm in NW Iberia, a pollen record from Area Longa (Galicia). Quaternary Research,67(3), 438–452.Google Scholar
  17. Granja, H. M. (1999). Evidence for Late Pleistocene and Holocene sea-level, neotectonic and climate control in the coastal zone of northwest Portugal. Geologie en Mijnbouw,77(3–4), 233–245.Google Scholar
  18. Granja, H. M., & De Groot, T. A. M. (1996). Sea-level rise and neotectonism in a holocene coastal environment at Cortegaça beach (NW Portugal): A case study. Journal of Coastal Research,12(1), 160–170.Google Scholar
  19. Granja, H., Rocha, F., Matias, M., Moura, R., Caldas, F., Marques, J., et al. (2010). Lagoa da Apúlia: A residual lagoon from the Late Holocene (NW coastal zone of Portugal). Quaternary International,221(1–2), 46–57.Google Scholar
  20. Guerin, G., & Mercier, N. (2011). Determining gamma dose rates by field gamma spectroscopy in sedimentary media: Results of Monte Carlo simulations. Radiation Measurements,46(2), 190–195.Google Scholar
  21. Hossain, S. M., De Corte, F., Vandenberghe, D., & van den Haute, P. (2002). A comparison of methods for the annual radiation dose determination in the luminescence dating of loess sediment. Nuclear Instruments & Methods in Physics Research Section A-Accelerators Spectrometers Detectors and Associated Equipment,490(3), 598–613.Google Scholar
  22. Litchfield, N., Wilson, K., Berryman, K., & Wallace, L. (2010). Coastal uplift mechanisms at Pakarae River mouth: Constraints from a combined Holocene fluvial and marine terrace dataset. Marine Geology,270(1–4), 72–83.Google Scholar
  23. Margari, V., Skinner, L. C., Tzedakis, P. C., Ganopolski, A., Vautravers, M., & Shackleton, N. J. (2010). The nature of millennial-scale climate variability during the past two glacial periods. Nature Geoscience,3(2), 127–131.Google Scholar
  24. Martínez-Carreño, N., & García-Gil, S. (2017). Reinterpretation of the Quaternary sedimentary infill of the Ría de Vigo, NW Iberian Peninsula, as a compound incised valley. Quaternary Science Reviews,173, 124–144.Google Scholar
  25. Minckley, T. A., Haws, J. A., Benedetti, M. M., Brewer, S. C., & Forman, S. L. (2015). Last interglacial vegetation and climate history from the Portuguese coast. Journal of Quaternary Science,30(1), 59–69.Google Scholar
  26. Muñoz Sobrino, C., García-Moreiras, I., Gómez-Orellana, L., Iriarte-Chiapusso, M. J., Heiri, O., Lotter, A. F., et al. (2018). The last hornbeam forests in SW Europe: new evidence on the demise of Carpinus betulus in NW Iberia. Vegetation History and Archaeobotany,27(4), 551–576.Google Scholar
  27. Murray, A. S., & Wintle, A. G. (2000). Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol. Radiation Measurements,32(1), 57–73.Google Scholar
  28. Naughton, F., Sanchez Goñi, M. F., Desprat, S., Turon, J. L., Duprat, J., Malaizé, B., et al. (2007). Present-day and past (last 25 000 years) marine pollen signal off western Iberia. Marine Micropaleontology,62(2), 91–114.Google Scholar
  29. Noronha, F. (2003). Carta geotécnica do Porto,. 2ª edição, Vol 1 -Notícia Explicativa e Cartas, Tomo 1–Noticia explicativa. Câmara Municipal do Porto.Google Scholar
  30. Pinto de Jesus, A., Mosquera, D., Vidal Romani, J. R., & Noronha, F. (2008). Climatic and tectonic significance of upper Pleistocene terraces from Lavadores, Northern of Portugal. Porto: PoCoast Seminar on Coastal Research, FEUP.Google Scholar
  31. Poreba, G. J., & Fedorowicz, S. (2005). Gamma spectrometry for OSL and TL dating of loess deposits at Dybawka and Tarnawce (SE Poland). Geochronometria,24, 27–32.Google Scholar
  32. Prescott, J. R., & Hutton, J. T. (1994). Cosmic-ray contributions to dose-rates for luminescence and Esr dating-large depths and long-term time variations. Radiation Measurements,23(2–3), 497–500.Google Scholar
  33. Reille, M. (1992). Pollen et spores d’Europe et d’Afrique du Nord. Marseille: Editions du Laboratoire De Botanique Historique Et Palynologie.Google Scholar
  34. Reille, M. (1995). Pollen et spores d’Europe et d’Afrique du Nord (Supplement 1). Marseille: Editions du Laboratoire de Botanique Historique et Palynologie.Google Scholar
  35. Reille, M. (1998). Pollen et spores d’Europe et d’Afrique du Nord (Supplement 2). Marseille: Editions du Laboratoire de Botanique Historique et Palynologie.Google Scholar
  36. Ribeiro, O., Neiva, J. M. C., & Teixeira, C. (1943). Depósitos e níveis quaternários dos arredores do Porto. Boletim da Sociedade Geológica de Portugal,3, 95–103.Google Scholar
  37. Ribeiro, H., Pinto de Jesus, A., Oliveira, F., Vidal Romani, J., Abreu, I., & Noronha, F. (2014). Estudo da “Formação Areno-Pelítica” na zona Litoral Porto-Vila Nova de Gaia. Contribuição do conteúdo polínico. IX CNG/2º CoGePLiP, Porto 2014. Comun Geológicas,101(Especial II), 631–634.Google Scholar
  38. Roucoux, K. H., De Abreu, L., Shackleton, N. J., & Tzedakis, P. C. (2005). The response of NW Iberian vegetation to North Atlantic climate oscillations during the last 65 kyr. Quaternary Science Reviews,24(14–15), 1637–1653.Google Scholar
  39. Sanchez-Goñi, M. F., Loutre, M. F., Crucifx, M., Peyron, O., Santos, L., Duprat, J., et al. (2005). Increasing vegetation and climate gradient in Western Europe over the Last Glacial Inception (122–110 ka): data-model comparison. Earth and Planetary Science Letters,231(1–2), 111–130.Google Scholar
  40. Shepard, F. P., & Young, R. (1961). Distinguishing between beach and duna sand. Journal of Sedimentary Petrology,31, 196–214.Google Scholar
  41. Soares de Carvalho, G. S., Granja, H. M., Loureiro, E., & Henriques, R. (2006). Late Pleistocene and Holocene environmental changes in the coastal zone of northwestern Portugal. Journal of Quaternary Science,21(8), 859–877.Google Scholar
  42. Teixeira, C., Perdigão, J., & Torre de Assunção, C. (1962). Carta Geológica de Portugal na escala 1:50 000, Notícia Explicativa da Folha 13-A-Espinho. Lisboa: Serviços Geológicos de Portugal.Google Scholar
  43. Viveen, W., Braucher, R., Bourles, D., Schoorl, J. M., Veldkamp, A., van Balen, R. T., et al. (2012a). a). A 0.65 Ma chronology and incision rate assessment of the NW Iberian Mino River terraces based on Be-10 and luminescence dating. Global and Planetary Change,94–95, 82–100.Google Scholar
  44. Viveen, W., van Balen, R. T., Schoorl, J. M., Veldkamp, A., Temme, A. J. A. M., & Vidal-Romani, J. R. (2012b). Assessment of recent tectonic activity on the NW Iberian Atlantic Margin by means of geomorphic indices and field studies of the Lower Mino River terraces. Tectonophysics,544, 13–30.Google Scholar
  45. White, T. S., Bridgland, D. R., Westaway, R., Howard, A. J., & White, M. J. (2010). Evidence from the Trent terrace archive, Lincolnshire, UK, for lowland glaciation of Britain during the Middle and Late Pleistocene. Proceedings of the Geologists’ Association,121(2), 141–153.Google Scholar
  46. Zazo, C., Goy, J. L., Hillaire-Marcel, C., Dabrio, C. J., González-Delgado, J. A., Cabero, A., et al. (2010). Sea level changes during the last and present interglacials in Sal Island (Cape Verde archipelago). Global and Planetary Change,72(4), 302–317.Google Scholar
  47. Zbyszewski, G., & Teixeira, C. (1949). Le niveau quaternaire marin de 5–8 m au Portugal. Boletim da Sociedade Geológica de Portugal,8(1–2), 1–6.Google Scholar

Copyright information

© Universidad Complutense de Madrid 2019

Authors and Affiliations

  • H. Ribeiro
    • 1
    • 2
    Email author
  • A. Pinto de Jesus
    • 1
    • 2
  • J. Sanjurjo
    • 3
  • I. Abreu
    • 1
    • 4
  • J. R. Vidal Romani
    • 3
  • F. Noronha
    • 1
    • 2
  1. 1.Institute of Earth Sciences, Porto-Pole PortugalPortoPortugal
  2. 2.Department of Geosciences, Environment and Spatial PlanningUniversity of PortoPortoPortugal
  3. 3.Instituto Universitário de Xeoloxia Isidro Parga PondalUniversidade da CoruñaA CoruñaSpain
  4. 4.Biology Department, Faculty of SciencesUniversity of PortoPortoPortugal

Personalised recommendations