Advertisement

Seismic stratigraphy and hydrocarbon prospectivity of the Aptian–Albian succession along the Oued Bahloul Basin, Central Ouest Tunisia

  • Makrem HarzaliEmail author
  • Habib Troudi
  • Alexis Godet
  • Jamel Ouali
Research Paper
  • 18 Downloads

Abstract

The Aptian–Albian sediments deposited along the Tunisian Atlas and, overlain by the Vraconian seals constitute an attractive hydrocarbon play in the Oued Bahloul Basin of the Central Tunisia. Albian organic-rich shale unconformably underlies the Aptian dolomites and plays as a major source rock proven by oil and gas discovered so far with the Aptian reservoir layers. In central Tunisia, many wells have proven the Aptian–Albian play in structural traps, with an oil discovery in central onshore and offshore Tunisia. In order to document and map the reservoir distribution and stratigraphic-trap fairway, the Aptian–Albian sedimentary package is divided into a number of depositional sequences and systems tracts using key regional seismic lines calibrated with boreholes. Tracing of the key surfaces bounding the Aptian–Albian has been carried out using all the seismic lines provided from Tunisian Company of Petroleum Activities (ETAP). The interpretation of 2D seismic lines can allow for the reconstruction of 3D structural elements to reduce potential risk prior to exploratory drilling. Relative sea-level fluctuations and rejuvenation of major faults significantly influenced the Aptian–Albian depositional system creating regional unconformities and influencing the evolution of accommodation space. Although the development of the seismic sequences is partially influenced by local tectonics, the overall stacking pattern of the Aptian–Albian sedimentary strata displays seven third-order cycles and two second-order cycle, which is in harmony with the eustatic sea level chart. In this work, the facies analysis using sequence stratigraphy and seismic sedimentology offer useful insight to Aptian hydrocarbon exploration in Oued Bahloul Basin and other analogous basins and can contribute in the exploration and reservoir development.

Keywords

Aptian–Albian Sequence stratigraphy Tectonic reactivation Seismic facies Reservoir Oued Bahloul 

Resumen

Los depósitos de edad Aptiense-Albiense que afloran en el Atlas tunecino y que están sellados por otros Vraconienses constituyen una interesante reserva de hidrocarburos en la Cuenca Oued Bahloul del centro de Túnez. El esquisto que constituye las rocas del Aptiense es rico en materia orgánica y se localiza bajo las dolomías del Albiense de forma discordante. Estos depósitos aptienses han representado hasta la fecha el origen de hidrocarburos en la zona. Estos descubrimientos se han podido seguir desde el centro hasta zonas offshore de costa de Túnez. Para realizar la cartografía y localización estratigrafía de las trampas de petróleo de este registro sedimentario, se han descrito secuencias deposicionales y se ha realizado la interpretación de líneas sísmicas. De este modo, el estudio de la continuidad lateral del contacto de los sedimentos aptienses y albienses se ha llevado a cabo mediante los datos proporcionados por las líneas sísmicas de la Compañía Tunecina de Actividades Petroleras (ETAP). La interpretación de líneas sísmicas 2D ha permitido la reconstrucción de elementos estructurales 3D para poder reducir potenciales riesgos antes de la perforación definitiva. Los cambios relativos del nivel del mar así como la reactivación de las fallas principales condicionaron todo el sistema deposicional, creando inconformidades regionales y variando el espacio de acomodación. Aunque el desarrollo de las secuencias sísmicas muestra estar parcialmente condicionado por la tectónica local, el patrón general de apilamiento Aptiense-Albiense muestra siete ciclos de tercer orden y dos de segundo orden que encajan bien con las tablas de variación eustática del nivel del mar. En el presente trabajo se han diferenciado facies y secuencias estratigráficas y sísmicas ofreciendo una herramienta válida para el estudio de la exploración de los hidrocarburos de la cuenca de Oued Bahloul pudiendo contribuir en el estudio de la exploración y desarrollo de otros reservorios en otras cuencas.

Palabras clave

Aptian-Albian Estratigrafía Secuencial reactivación tectónica facies sísmicas reservorio Oued Bahloul 

Notes

Acknowledgements

We would like to thank the Tunisian National Oil Company (ETAP) for allowing us to access to some well and seismic data belonging to the studied area. Also, we appreciate the fruitful discussions and helpful language revision of the manuscript from Editors, reviewers and colleague’s from ETAP exploration department. The authors are grateful to Dr. Hafedh Harzali (King Abdulaziz University, Jeddah, Saudia) for English improvement.

References

  1. Aguado, R., Castro, J. M., Company, M., & de Gea, G. A. (1999). Aptian bio-events: an integrated biostratigraphic analysis of the Almadich Formation, Inner Prebetic Domain, SE Spain. Cretaceous Research, 20, 663–683.CrossRefGoogle Scholar
  2. Azaïez, H., Bédir, M., Tanfous, D., & Soussi, M. (2007). Seismic sequence stratigraphy and platform to basin reservoir structuring of Lower Cretaceous deposits in the Sidi Aïch-Majoura region (central Tunisia). Journal of African Earth Sciences, 48(2007), 1–18.CrossRefGoogle Scholar
  3. Bádenas, B., Salas, R., & Aurell, M. (2004). Three orders of regional sea-level changes control facies and stacking patterns of shallow platform carbonates in the Maestrat Basin (Tithonian–Berriasian, NE Spain). International Journal of Earth Sciences, 93, 144–162.CrossRefGoogle Scholar
  4. Bédir, M., 1995. Mécanismes géodynamiques des bassins associés aux couloirs de coulissements de la marge atlasique de la Tunisie, seismo-stratigraphie, seismotectonique et implications pétrolières. Unpublished thesis, Doctorat d’Etat, Université de Tunis II (Tunisia), p. 412.Google Scholar
  5. Ben Ayed, N. (1986). Evolution tectonique de l’avant pays de la chaîne alpine de Tunisie du début du Mésozoïque à l’actuel. Thèse ès Sciences (p. 347). Orsay: Université du Paris-sud.Google Scholar
  6. Ben Ayed, N., El Ghali, A., Bobier, C., Chekhma, H., & Rabhi, M. (1997). Déformations synsédimentaires du Barrémo-Aptien dans l’Atlas Tunisien, conséquences paléogéographiques. Résumé: Les marges téthysiennes d’Afrique du Nord.Google Scholar
  7. Ben Fadhel, M., Layeb, M., Hedfi, A., & Ben Youssef, M. (2011). Albian oceanic anoxic events in northern Tunisia: Biostratigraphic and geochemical insights. Cretaceous Research., 32(6), 685–699.Google Scholar
  8. Ben Youssef, M., 1999. Stratigraphie génétique du Crétacé de Tunisie. Micropaléontologie, stratigraphie séquentielle et géodynamique des bassins de la marge sud et péritéthysienne. PhD thesis, University of Tunis El Manar, pp. 402.Google Scholar
  9. Benzarti, R. (2002). Synthése biostratigraphique du permis Jelma. Rapport Inédit, SEREPT, Tunis, GN3833, p. 37.Google Scholar
  10. Bouaziz, S., Barrier, E., Soussi, M., Turki, M., & Zouari, H. (2002). Tectonic evolution of the northern African margin in Tunisia from paleostress data and sedimentary record. Tectonophysics, 357, 227–253.CrossRefGoogle Scholar
  11. Boukadi, N., & Bédir, M. (1996). L’halocinèse en Tunisie: contexte tectonique et chronologie des évènements. Comptes Rendu de l’Académie des Sciences Paris, 322(7), 587–594.Google Scholar
  12. Bréhéret, J. G. (1997). L’Aptien et l’Albien de la Fosse vocontienne (des bordures au bassin) Evolution de la sédimentation et enseignements sur les évènements anoxiques. Mémoires de la Société géologique du Nord, 1997(25), 614.Google Scholar
  13. Burollet, P. F. (1956). Contribution à l’étude stratigraphique de la Tunisie centrale. Annales des Mines et de la Géologie (Tunis)., 18, 345.Google Scholar
  14. Burollet P.F., Busson G. (1983). Plates-formes et Bassins: danger d’un actualisme exagère. Notes et Mémoires TOTAL CFP, Paris, 18(7), 2, fig., 2 pl.Google Scholar
  15. Burollet, P. F., & Desforges, G. (1982). Dynamique des bassins neo crétacés en Tunisie. Mémoire Géologique de l’Université de Dijon, 7, 381–389.Google Scholar
  16. Burollet, P. F., & Ellouz, N. (1986). L’évolution des bassins sédimentaires de la Tunisie centrale et orientale. Bulletin des Centres de Recherche de Pau SNPA., 10, 49–68.Google Scholar
  17. Carannante, G., Pugliese, A., Ruberti, D., Simone, L., Vigliotti, M., & Vigorito, M. (2009). Evoluzione cretacica di un settore della piattaforma apula da dati di sottosuolo e di affioramento (Appennino campano–molisano). Italian Journal of Geosciences., 128, 3–31.Google Scholar
  18. Catuneanu, O. (2006). Principles of Sequence Stratigraphy (p. 386). Amsterdam: Elsevier.Google Scholar
  19. Catuneanu, O., Abreu, V., Bhattacharya, J. P., Blum, M. D., Dalrymple, R. W., Eriksson, P. G., et al. (2009). Towards the standardization of sequence stratigraphy. Earth-Science Reviews, 92, 1–33.CrossRefGoogle Scholar
  20. Chaabani, F., & Razgallah, S. (2006). Aptian sedimentation: an example of interaction between tectonics and eustatics in central Tunisia. Geological Society, London Special Publication, 262, 55–74.CrossRefGoogle Scholar
  21. Chihaoui, A., Jaillard, E., Latil, J. L., Zghal, I., Susperregui, A. S., Touir, J., et al. (2010). Stratigraphy of the Hameima and lower Fahdene Formations in the Tadjerouine area (Northern Tunisia). Journal of African Earth Sciences, 58, 387–399.CrossRefGoogle Scholar
  22. Coccioni, R., Erba, E., & Premoli-Silva, I. (1992). Barremian–Aptian calcareous plankton biostratigraphy from the Gorgo a Cerbara section (Marche, central Italy) and implications for plankton evolution. Cretaceous Research, 13, 517–537.CrossRefGoogle Scholar
  23. Coccioni, R., Luciani, V., & Marsili, A. (2006). Cretaceous oceanic anoxic events and radially elongated chambered planktonic foraminifera: Paleoecological and paleoceanographic implications. Palaeogeography, Palaeoclimatology, Palaeoecology., 235(1–3), 66–92.CrossRefGoogle Scholar
  24. Danelian, T., Baudin, F., Gardin, S., Beltran, C., & Masure, E. (2002). Early Aptian productivity increase as recorded in the Fourcale level of the Ionian zone of Greece. Comptes Rendus de l’Académie des Sciences Géoscience, 334, 1087–1093.CrossRefGoogle Scholar
  25. Dercourt, J., Zonenshain, L. P., Ricou, L. E., Kazmin, V. G., Le Pichon, X., Knipper, A. L., et al. (1985). Présentation de neuf cartes paléogéographiques au 1/20.000.000 s’étendant de l’Atlantique au Pamir pour la période du Lias à l’Actuel. Bulletin de la Société Géologique de France, 8, 637–652.Google Scholar
  26. Dickens, G. R. (2000). Methane oxidation during the late Palaeocene thermal maximum. Bulletin de la Société Géologique de France, 171(2000), 37–49.Google Scholar
  27. El Euchi H., Fourati L., Hamouda F., Saidi M. (1998). Structural Style and Hydro-carbon Habitat in Northern Tunisia. Field Trip Guide Book, vol. 13. Entreprise Tunisienne d’Activités Pétrolières (ETAP) Memoire, p. 72Google Scholar
  28. El Euchi, H., Ouahchi, A., M’Rabet, A. (2000). The Tunisian Aptian–Albian carbonate platform: dynamic and petroleum potential. In: EAGE 62nd conference and technical exhibition. Scotland, 29 May-2 June 2000.Google Scholar
  29. Elkhazri, A., Razgallah, S., Abdallah, H., & Ben Haj Ali, N. (2009). L’événement anoxique « OAE 1a » Barrémo-Aptien en Tunisie nord-orientale: Intérêt des foraminifères. Revue de Paléobiologie, Genève, 28(1), 93–130.Google Scholar
  30. Erba, E. (2004). Calcareous nannofossils and Mesozoic oceanic anoxic events. Marine Micropaleontology, 52, 85–106.CrossRefGoogle Scholar
  31. Erba, E., Channell, J. E. T., Claps, M., Jones, C., Larson, R., Opdyke, B., et al. (1999). Integrated stratigraphy of the Cismon Apticore (Southern Alps, Italy): a “reference section” for the Barremian-Aptian Interval at low latitudes. Journal of Foraminiferal Research, 29(1999), 371–391.Google Scholar
  32. Erbacher, J., & Thurow, J. (1997). Influence of oceanic anoxic events on the evolution of mid-Cretaceous radiolaria in the North Atlantic and western Tethys. Marine Micropaleontology, 30, 139–158.CrossRefGoogle Scholar
  33. Fiet, N., Beaudoin, B., & Parize, O. (2001). Lithostratigraphic analysis of MILANKOVITCH cyclicity in pelagic Albian deposits of central Italy: implications for the duration of the stage and substages. Cretaceous Research, 22(2001), 265–275.CrossRefGoogle Scholar
  34. Föllmi, K. B. (2012). Early Cretaceous life, climate and anoxia. Cretaceous Research., 35, 230–257.CrossRefGoogle Scholar
  35. Föllmi, K. B., Godet, A., Bodin, S., & Linder, P. (2006). Interactions between environmental change and shallow water carbonate buildup along the northern Tethyan margin and their impact on the Early Cretaceous carbon isotope record. Paleoceanography, 21, PA4211.CrossRefGoogle Scholar
  36. Frizon de Lamotte, D., Raulin, C., Mouchot, N., Wrobel-Daveau, J., Blanpied, C., & Ringenbach, J. (2011). The southernmost margin of the Tethys realm during the Mesozoic and Cenozoic: Initial geometry and timing of the inversion processes. Tectonics..  https://doi.org/10.1029/2010tc002691. issn: 0278-7407.Google Scholar
  37. Galeotti, S., Sprovieri, M., Coccioni, R., Bellanca, A., & Neri, R. (2003). Orbitally modulated black shale deposition in the upper Albian Amadeus Segment (Central Italy): a multi-proxy reconstruction Palaeogeography. Palaeoclimatology, Palaeoecology, 190(2003), 441–458.CrossRefGoogle Scholar
  38. Garcia-Mondejar, J., Owen, H. G., Raisossadat, N., Millan, M. I., & Fernandez-Mendiola, P. A. (2009). The Early Aptian of Aralar (Northern Spain): stratigraphy, sedimentology, ammonite biozonation, and OAE1a. Cretaceous Research, 30, 434–464.CrossRefGoogle Scholar
  39. Godet, A., Hfaiedh, R., Arnaud-Vanneau, A., Zghal, I., Arnaud, H., & Ouali, J. (2014). Aptian palaeoclimates and identification of an OAE1a equivalent in shallow marine environments of the southern Tethyan margin: Evidence from Southern Tunisia (Bir Oum Ali section, Northern Chott Chain). Cretaceous Research, 48(2014), 110–129.CrossRefGoogle Scholar
  40. Grasso, M., Torelli, L., & Mazzoldi, G. (1999). Cretaceous Palaeogene sedimentation patterns and structural evolution of the Tunisian shelf, offshore the Pelagian Islands (Central Mediterranean). Tectonophysics., 315(1–4), 235–250.CrossRefGoogle Scholar
  41. Gréselle, B., & Pittet, B. (2005). Fringing carbonate platforms at the Arabian Plate margin in northern Oman during the Late Aptian-Middle Albian: evidence for high amplitude sea-level changes. Sedimentary Geology, 175, 367–390.CrossRefGoogle Scholar
  42. Grötsch, J. (1996). Cycle stacking and long-term sea-level history in the Lower Cretaceous (Gavrovo platform, NW Greece). Journal of Sedimentary Research, 66, 723–736.CrossRefGoogle Scholar
  43. Grötsch, J., Billing, I., & Vahrenkamp, V. (1998). Carbon-isotope stratigraphy in shallow-water carbonates: implications for Cretaceous black-shale deposition. Sedimentology, 45, 623–634.CrossRefGoogle Scholar
  44. Heldt, M., Bachmann, M., & Lehmann, J. (2008). Microfacies, biostratigraphy, and geochemistry of the hemipelagic Barremian–Aptian: influence of the OAE 1a on the southern Tethys margin. Palaeogeography, Palaeoclimatology, Palaeoecology, 261, 246–260.CrossRefGoogle Scholar
  45. Herbert, T. D., & Fisher, A. G. (1986). Milankovitch climatic origin of mid-Cretaceous black shale rhythms in central Italy. Nature, 321(1986), 739–743.CrossRefGoogle Scholar
  46. Hfaiedh, R., Vanneau Arnaud, A., Godet, A., Arnaud, H., Zghal, I., Ouali, J., et al. (2013). Biostratigraphy, palaeoenvironments and sequence stratigraphy of the Aptian sedimentary succession at Jebel Bir Oum Ali (Northern Chain of Chotts, South Tunisia): Comparison with contemporaneous Tethyan series. Cretaceous Research, 46(2013), 177–207.CrossRefGoogle Scholar
  47. Hillgärtner, H., Van Buchem, F. S. P., Gaumet, F., Razin, P., Pittet, B., Grötsch, J., et al. (2003). The Barremian–Aptian evolution of the eastern Arabian carbonate platform margin (northern Oman). Journal of Sedimentary Research, 73, 756–773.CrossRefGoogle Scholar
  48. Hochuli, P. A., Menegatti, A. P., Weissert, H., Riva, A., Erba, E., & Premoli Silva, I. (1999). Episodes of high productivity and cooling in the early Aptian Alpine Tethys. Geology, 27, 657–660.CrossRefGoogle Scholar
  49. Husinec, A., & Jelaska, V. (2006). Relative sea-level changes recorded on an isolated carbonate platform: Tithonian to Cenomanian succession, southern Croatia. Journal of Sedimentary Research, 76(2006), 1120–1136.CrossRefGoogle Scholar
  50. Jahren, A. H., Arens, N. C., Sarmiento, G., Guerrero, J., & Amundson, R. (2001). Terrestrial record of methane hydrate dissociation in the Early Cretaceous. Geology, 29(2001), 159–162.CrossRefGoogle Scholar
  51. Jaillard, E., Dumont, T., Ouali, J., Bouillin, J. P., Chihaoui, A., Latil, J. L., et al. (2013). The Albian tectonic “crisis” in Central Tunisia: Nature and chronology of the deformations. Journal of African Earth Sciences, 85(2013), 75–86.CrossRefGoogle Scholar
  52. Jenkyns, H. C. (1980). Cretaceous anoxic events: from continents to oceans. Journal of the Geological Society, 137(2), 171–188.CrossRefGoogle Scholar
  53. Jenkyns, H.C. (1995). Carbon isotope stratigraphy and palaeoceanographic significance of the Lower Cretaceous shallow-water carbonates of resolution guyot, Mid-Pacific mountains. In: Winterer, EL., Sager, WW., JV., Sinton, JM., (Eds.), Proceedings of the Ocean Drilling Program, Scientific Results vol. 143, pp. 99–104.Google Scholar
  54. Jenkyns, H. C., Schouten-Huibers, L., Schouten, S., & Sinninghe Damsté, J. S. (2012). Warm Middle Jurassic-Early Cretaceous high-latitude sea-surface temperatures from the Southern Ocean. Climate of the Past, 8(215–226), 2012.Google Scholar
  55. Ladeb, F., Horrenberger, J.-C., Cailleux, Y., Zargouni, F. (1995). Structures synsédimentaires mésoscopiques associées à la distension aptienne en Tunisie centrale (Dj. Semmama). Comptes Rendus à l’Académie des Sciences de Paris 321 (IIa), 333–338.Google Scholar
  56. Larson, R. L., & Erba, E. (1999). Onset of the mid-Cretaceous greenhouse in the Barremian–Aptian: Igneous events and the biological, sedimentary, and geochemical responses. Paleoceanography, 14(1999), 663–678.CrossRefGoogle Scholar
  57. Lehmann, J., Heldt, M., Bachmann, M., & Negra, M. H. (2009). Aptian (Lower Cretaceous) biostratigraphy and cephalopods from north central Tunisia. Cretaceous Research, 30(4), 895–910.CrossRefGoogle Scholar
  58. Luciani, V., Ciobianchi, M., & Jenkyns, H. C. (2001). Biotic and geochemical response to anoxic events: the Aptian pelagic succession of the Gargano promontory (southern Italy). Geological Magazine, 138(3), 277–298.CrossRefGoogle Scholar
  59. M’Rabet, A. (1987). Stratigraphie, sédimentation et diagenèse carbonatée des séries du crétacé inférieur de Tunisie centrale. Annales des Mines et de la Geologie, 30, Ed. du Service géologique de Tunisie.Google Scholar
  60. M’Rabet, A., Mejri, F., Burollet, PF., Memmi, L., Chandoul, H. (1995). Catalog of type sections in Tunisia: Cretaceous. Entreprise Tunisienne des Activités Pétrolières- ETAP, Mémoire 8, p 123.Google Scholar
  61. Magniez-Jannin, F. (1998). L’élongation des loges chez les foraminifères planctoniques du Crétacé inférieur: une adaptation à la sous-oxygénation des eaux ? Comptes Rendus de l’Académie des Sciences de Paris, 326(1998), 207–213.Google Scholar
  62. Marie, J., Trouvé, P., Desforges, G., Dufaure, P., (1982). Nouveaux éléments de la paléogéographie du Crétacé d la Tunisie. (Note et mémoire no. 19).Google Scholar
  63. Marsaglia, K. M. (2005). Sedimentology, petrology, and volcanology of the Lower Aptian Anoxic Event (OAE 1a), Shatsky Rise, north-central Pacific Ocean. Proceedings Ocean Drilling Program, Scientific Results, 198(2005), 1–31.Google Scholar
  64. Martinez, C., Chikhaoui, M., Truillet, R., Ouali, J., & Creuzot, G. (1991). Le contexte géodynamique de la distension albo-aptienne en Tunisie septentrionale et centrale: Structuration éocrétacée de l’Atlas tunisien. Eclogae Geologicae Helvetia, 84(1), 61–82.Google Scholar
  65. Masse, J. P., & Fenerci-Masse, M. (2013). Stratigraphic updating and correlation of Late Barremian-Early Aptian Urgonian successions and their marly cover, in their type region (Orgon-Apt, SE France). Cretaceous Research, 39(2013), 17–28.CrossRefGoogle Scholar
  66. Memmi, L. (1989). Le Crétacé inférieur (Berriasien–Aptien) de Tunisie. Biostratigraphie, Paléogéographie et Paléoenvironnements. Thèse Doct. Ès- Sciences, University of Lyon 1, p. 158.Google Scholar
  67. Millán, M. I., Fernández-Mendiola, P. A., & García-Mondéjar, J. (2007). Pulsos de inundación marina en la terminación de una plataforma carbonatada (Aptiense inferior de Aralar, Cuenca Vasco-Cantábrica). Geogaceta, 41, 127–130.Google Scholar
  68. Millan, M. I., Weissert, H. J., Fernandez-Mendiola, P. A., & Garcia-Mondejar, J. (2009). Impact of Early Aptian carbon cycle perturbations on evolution of a marine shelf system in the Basque-Cantabrian Basin (Aralar, N Spain). Earth and Planetary Science Letters, 287, 392–401.CrossRefGoogle Scholar
  69. Millán, M. I., Weissert, H. J., Owen, H., Fernández-Mendiola, P. A., & García-Mondéjar, J. (2011). The Madotz Urgonian platform (Aralar, northern Spain): Paleoecological changes in response to Early Aptian global environmental events. Palaeogeography, Palaeoclimatology, Palaeoecology, 312(2011), 167–180.CrossRefGoogle Scholar
  70. Monseur, G., & Pel, J. (1972). Reef environment and stratiform ore deposits (essay of a synthesis of the relationship between them). In G. C. Amstutz & A. J. Bernard (Eds.), Ores in sediments (pp. 195–207). Berlin Heidelberg New York: Springer.Google Scholar
  71. Moreno-Bedmar, J. A., Bover-Arnal, T., Barragan, R., & Salas, R. (2012). Uppermost Lower Aptian transgressive records in Mexico and Spain: Chronostratigraphic implications for the Tethyan sequences. Terra Nova, 24(4), 333–338.CrossRefGoogle Scholar
  72. Ouahchi, A., M’Rabet, A., Lazreg, J., Mesaoudi, F., Ouazaa, S. (1998). Early structuring, paleoemersion and porosity development: A key for exploration of the aptian serdj carbonate reservoir in Tunisia. In: Proceedings of the 6th Tunisian petroleum exploration and production conference (Tunis May 5th–9th (1998), pp. 267–284.Google Scholar
  73. Ouali, J., Martinez, C., Khessibi, M. (1986). Caractères de la tectonique en distension au Jebel Kebar (Tunisie centrale): Ses conséquences. Géodynamique, ORSTOM, Paris, 1, (I), p 3–12.Google Scholar
  74. Peropadre, C., Meléndez, N., Liesa, C.L. (2008). Climate control on siliciclastic–carbonate balance during the Early–Middle Aptian and occurrence of high-frequency and high-amplitude sea-level oscillations. In: 26th IAS Meeting of Sedimentology, Abstracts, Bochum, Germany, SDGG, 58, p. 207.Google Scholar
  75. Pittet, B., Van Buchem, F. S. P., Hillgärtner, H., Razin, P., Grötsch, J., & Droste, H. (2002). Ecological succession, palaeoenvironmental change, and depositional sequences of Barremian–Aptian shallow–water carbonates in northern Oman. Sedimentology, 49, 555–581.CrossRefGoogle Scholar
  76. Premoli-Silva, E., Erba, G., Salvini, C., Locatelli, I., & Verga, D. (1999). Biotic changes in cretaceous oceanic anoxic events of the Tethys. Journal of Foraminiferal Research, 29, 352–370.Google Scholar
  77. Rameil, N., Immenhauser, A., Csoma, A. É., & Warrlich, G. (2012). Surfaces with a long history: The Aptian top Shu’aiba Formation unconformity, Sultanate of Oman. Sedimentology, 59, 212–248.CrossRefGoogle Scholar
  78. Raulin, C., 2013. Histoire tectonique du basin Sud-tunisien (Jeffara) du Paleozoïque au Tertiaire, PhD thesis, Cergy-Pontoise University, France.Google Scholar
  79. Retallack, G. J. (2001). A 300-million-year record of atmospheric carbon dioxide from fossil plant cuticules. Nature, 411(2001), 287–290.CrossRefGoogle Scholar
  80. Ricou, L. E. (1994). Tethys reconstructed: plates Continental fragments and their boundaries since 260 Ma from Central America to South-Eastern Asia. Geodinamica Acta, 7, 169–218.CrossRefGoogle Scholar
  81. Coward M.P., Ries, A.C. (2003). Tectonic development of North Africa basins. In: Arthur, T.J., Macgregor, D.S., Cameron, N.R. (Editors.) New Themes and Developing Technologies. Geological Society of London, Special Publication 207, 61–83.Google Scholar
  82. Robaszynski, F., Caron, M., Amedro, F., Dupuis, C., Hardenbol, J., Gonzalez Donoso, J.M., Linares, D., Gartner, S., (1994). Le Cénomanien de la région de Kalaat Senan (Tunisie centrale): Litho-biostratigraphie et interprétation séquentielle-Revue de Paléobiologie, Genève, vol. 12, no. 2, p. 351–505, 24 pls.Google Scholar
  83. Robaszynski, F., Caron, M., Dupuis, C., Amedro, F., Gonzalez Donoso, J.-M., Linares, D., et al. (1990). A tentative integrated stratigraphy in the Turonian of central Tunisia: formations, zones and sequential stratigraphy in the Kalaat Senan area. Bulletin des centres de recherches Exploration-production Elf-Aquitaine, 14, 214–384.Google Scholar
  84. Rosales, I. (1999). Controls on carbonate-platform evolution on active fault blocks: the Lower Cretaceous Castro Urdiales platform (Aptian–Albian, northern Spain). Journal of Sedimentary Research, 69, 447–465.CrossRefGoogle Scholar
  85. Ruberti, D., Bravi, S., Carannante, G., Vigorito, M., & Simone, L. (2013). Decline and recovery of the Aptian carbonate factory in the southern Apennine carbonate shelves (southern Italy): climatic/oceanographic vs. local tectonic controls. Cretaceous Research, 39, 112–132.CrossRefGoogle Scholar
  86. Saadi, A., Boukadi, N., & Gaaya, A. (2006). Sur les anomalies structurales de l’anticlinal de l’oued Bahloul de Tunisie: Héritage tectonique et plissement cisaillant de couverture. Comptes Rendus Geoscience, 338(2006), 650–657.CrossRefGoogle Scholar
  87. Sageman, B.B., Rich, J., Arthur, M.A., Dean, W.E., Savrda, C.E., Bralower, T.J. (1998). Multiple Milankovitch cycles in the Bridge Creek limestone (Cenomanian–Turonian), western Interior basin. In W.E. Dean, M.A. Arthur (Eds.), Stratigraphy and Paleoenvironments of the Cretaceous Western Interior Seaway, USA, SEPM Concepts in Sedimentology and Paleontology, vol. 6, pp. 153–171.Google Scholar
  88. Saidi, M., Acheche, A., Inoubli, H., & Belayouni, H. (1992). Identification and characterization of potential source rocks in Central Tunisia (Abstract). London: AAPG Conference.Google Scholar
  89. Schlanger, S. O., & Jenkyns, H. C. (1976). Cretaceous oceanic anoxic events: Causes and consequences. Geologie en Mijnbouw, 55, 179–184.Google Scholar
  90. Skelton, P., & Gili, E. (2012). Rudists and carbonate platforms in the Aptian: a case study on biotic interactions with ocean chemistry and climate. Sedimentology, 59, 81–117.CrossRefGoogle Scholar
  91. Steuber, T., Rauch, M., Masse, J. P., Graaf, J., & Malkoc, M. (2005). Low-latitude seasonality of Cretaceous temperatures in warm and cold episodes. Nature, 432, 1341–1344.CrossRefGoogle Scholar
  92. Strasser, A., Pittet, B., Hillgärtner, H., & Pasquier, J. B. (1999). Depositional sequences in shallow carbonate-dominated sedimentary systems: Concepts for a high-resolution analysis. Sedimentary Geology, 128, 201–221.CrossRefGoogle Scholar
  93. Tandia, I. 2001. Etude lithostratigraphique et sédimentologique des séries du Crétacé inférieur (Barrémien e Albien) de la Tunisie centro-septentrionale (régions du Krib et de Tajérouine). PhD, Université de Tunis.Google Scholar
  94. Tejada, M. L. G., Mahoney, J. J., Neal, C. R., Duncan, R. A., & Petterson, M. G. (2002). Basement geochemistry and geochronology of Central Malaita, Solomon Islands, with implications for the origin and evolution of the Ontong Java Plateau. Journal of Petrology, 43(2002), 449–484.CrossRefGoogle Scholar
  95. Thrana, C., & Talbot, M. R. (2006). High-frequency carbonate–siliciclastic cycles in the Miocene of the Lorca Basin (Western Mediterranean, SE Spain). Geologica Acta, 4, 343–354.Google Scholar
  96. Tlatli M. 1980. Etude des calcaires de l’Albo-Aptien des Jebels Serj et Bellouta (Tunisie Centrale). Thèse Doct. 3ème cycle, Univ. Provence Aix. Marseille, II, p 186.Google Scholar
  97. Trabelsi, K., Touir, J., Märsche, I. S., Closas, C. M., Soussi, M., & Colin, J. P. (2010). Découverte de charophytes de l’Albien dans la Formation Kebar (Tunisie centrale): implications paléoécologiques et paléobiogéographiques. Annales de Paléontologie, 96(3), 117–133.CrossRefGoogle Scholar
  98. Troudi, H., 2007. Characterization of the Aptian Serdj Carbonate reservoir in Kaboudia Offshore Permit-Tunisia, pp. 43. Internal Report.Google Scholar
  99. Turki, M.M., 1985. Polycinematique et contrôle sédimentaire associe sur la cicatrice Zaghouan-Nebhana. These Doc. Etat, Univ. Tunis et Revue Sc. Terre, C.S.T-I.N.R.S.T (ed.), 7, pp 228.Google Scholar
  100. Weissert, H., & Erba, E. (2004). Volcanism, CO2 and palaeoclimate: a Late Jurassic-Early Cretaceous carbon and oxygen isotope record. Journal of the Geological Society (London), 161, 695–702.CrossRefGoogle Scholar
  101. Zghal, I. (1994). Étude microbiostratigraphique du Crétacé inférieur de la Tunisie du centre-ouest (région de Kasserine-Sbeïtla et de Tadjerouine), Thèse 3e Cycle, Faculté des sciences de Tunis.Google Scholar
  102. Zouaghi, T., Ferhi, I., Bédir, M., Ben Youssef, M., Gasmi, M., & Inoubli, M. H. (2011). Analysis of Cretaceous (Aptian) strata in central Tunisia, using 2D seismic data and well logs. Journal of African Earth Sciences., 61(1), 38–61.CrossRefGoogle Scholar

Copyright information

© Universidad Complutense de Madrid 2019

Authors and Affiliations

  1. 1.Water, Energy and Environment Laboratory, Engineering National School of Sfax (ENIS)University of SfaxSfaxTunisia
  2. 2.Entreprise Tunisienne d’Activités PétrolièresTunisTunisia
  3. 3.Department of Geological SciencesThe University of Texas at San AntonioSan AntonioUSA

Personalised recommendations