Advertisement

Seismogenic nodes defined with pattern recognition in the French Massif Central

  • A. Gorshkov
  • Y. Gaudemer
Research Paper
  • 1 Downloads

Abstract

The goal of this work is to identify seismogenic nodes capable of generating I0 ≥ VI earthquakes in the French Massif Central, an intraplate region of low-to-moderate seismicity in the Mediterranean. For this purpose, we apply a phenomenological approach based on the pattern recognition. Recognition objects—morphostructural nodes—have been delineated with the morphostructural zoning method enabling to outline the hierarchical block-structure of the region, the network of morphostructural lineaments bounding blocks, and the loci of the nodes that are formed at the intersections of the lineaments. The epicenters of I0 ≥ VI earthquakes nucleate at some of the delineated nodes. The CORA-3 recognition algorithm pinpointed the other capable nodes, where the target earthquakes have not yet been recorded. The recognized seismogenic nodes are situated mainly in the eastern part of the Massif and correlate with high ranks lineaments dividing the larger blocks of the Massif Central. An assemblage of geomorphic features typical of seismogenic nodes was also defined. The work provides information on the potential earthquake sources which is very important for knowledgeable long-term seismic hazard assessment.

Keywords

French Massif Central Morphostructural zoning Pattern recognition Seismogenic nodes 

Resumen

El objetivo de este trabajo es la identificación de nodos sismogenéticos capaces de generar terremotos de Intensidad I0 > VI en el Macizo Central Francés, una región intraplaca de sismicidad moderada a baja, situada en el ámbito mediterráneo. Con este propósito aplicamos una aproximación fenomenológica basada en el reconocimiento de patrones. Los objetos a reconocer –nodos morfo-estructurales– han sido delineados con el método de zonificación estructural que ha permitido delinear la estructura jerárquica de bloques de la región, la red de lineamientos morfo-estructurales que limitan esos bloques y la localización de los nodos formados por la intersección de los lineamientos. Los epicentros de los terremotos de I0 > VI se nuclean en algunos de los nodos delineados. El algoritmo de reconocimiento CORA-3 situó los otros nodos capaces, en los que los terremotos buscados no se han registrado aun. Los nodos sismogénicos reconocidos se sitúan principalmente en el sector oriental del Macizo y se correlacionan con lineamientos de alto rango. Este trabajo aporta información acerca de potenciales fuentes de terremotos que es muy importante para las estimaciones de peligrosidad sísmica a largo plazo.

Palabras clave

French Massif Central Zonificación morfoestructural Reconocimiento de patrones Sismogénico nodos 

Notes

Acknowledgements

A.Gorshkov was partly funded by Russian Foundation of Basic Research (RFBR) according to the research Projects No. 16-55-12033.

References

  1. Alexeevskaya, M. A., Gabrielov, A. M., Gvishiani, A. D., Gelfand, I. M., & Rantsamn, E. Ya. (1977). Formal morphostructural zoning of mountain territories. Journal of Geophysics, 43, 227–233.Google Scholar
  2. Audin, L., Avouac, J.-P., Flouzat, M., & Plantet, J.-L. (2002). Fluid-driven seismicity in a stable tectonic context: The remiremont fault zone, vosges. Geophysical Research Letters, 29, 13.  https://doi.org/10.1029/2001gl012988.CrossRefGoogle Scholar
  3. Baize, S., Cushing, M., Lemeille, F., Granier, T., Grellet, B., Carbon, D., et al. (2002). Inventaire des indices de rupture affectant le Quaternaire en relation avec les grandes structures connues en France métropolitaine et dans les régions limitrophes. Mémoire de la société géologique de France, 175, 1–142.Google Scholar
  4. Baize, S., Cushing, E. M., Lemeille, F., & Jomard, H. (2013). Updated seismotectonic zoning scheme of Metropolitan France, with reference to geologic and seismotectonic data. Bulletin de la Societe Geologique de France, 184, 225–259.CrossRefGoogle Scholar
  5. Benedetti, L. C., Tapponnier, P., Gaudemer, Y., Manighetti, I., & Van der Woerd, J. (2003). Geomorphic evidence for an emergent active thrust along the edge of the Po Plain: The Broni-Stradella fault. Journal of Geophysical Research, 108, 28.  https://doi.org/10.1029/2001jb001546.CrossRefGoogle Scholar
  6. Bongard, M. M. (1967). Problema uznavaniya (Problem of Recognition). Moscow: Nauka. (in Russian).Google Scholar
  7. Cloetingh, S., Cornu, T., Ziegler, P. A., & Beekman, F. (2006). Neotectonics and intraplate continental topography of the northern Alpine Foreland. Earth-Science Reviews, 74, 127–196.CrossRefGoogle Scholar
  8. D’Amico, V., Albarello, D., & Mantovani, E. (1999). A distribution-Free Analysis of Magnitude-Intensity Relationships: an Application to the Mediterranean Region. Physics and Chemistry of Earth, 24, 517–521.CrossRefGoogle Scholar
  9. Faure, M., Be Mezeme, E., Cocherie, A., Ross, I. P., Chemenda, A., & Boutelier, D. (2008). Devonian geodynamic evolution of the Variscan Belt, insights from the French Massif Central and Massif Armoricain. Tectonics, 27, 19.  https://doi.org/10.1029/2007TC002115.CrossRefGoogle Scholar
  10. Gelfand, I., Guberman, Sh, Izvekova, M., Keilis-Borok, V., & Rantsman, E. (1972). Criteria of high seismicity, determined by pattern recognition. Tectonophysics, 13, 415–422.CrossRefGoogle Scholar
  11. Gelfand, I. M., Guberman, Sh A, Keilis-Borok, V. I., Knopoff, L., Press, F., Ranzman, I. Ya., et al. (1976). Pattern recognition applied to earthquake epicenters in California. Physics of the Earth and Planetary Interiors, 11, 227–283.CrossRefGoogle Scholar
  12. Geological map of France. (1996). 1:1,000,000. Orlean: BRGM.Google Scholar
  13. Giardini, D., Grünthal, G., Shedlock, K. M., & Zhang, P. (1999). The GSHAP Global Seismic Hazard Map. Annali di Geofisica, 42(6), 1225–1228.Google Scholar
  14. Girdler, R. W., & McConnell, D. A. (1994). The 1990 to 1991 Sudan earthquake sequence and the extent of the East African Rift System. Science, 264, 67–70.CrossRefGoogle Scholar
  15. Gorshkov, A., Kossobokov, V., & Soloviev, A. (2003). Recognition of earthquake-prone areas. In V. Keilis-Borok & A. Soloviev (Eds.), Nonlinear Dynamics of the Lithosphere and Earthquake Prediction (pp. 239–310). Heidelberg: Springer.CrossRefGoogle Scholar
  16. Gorshkov, A. I., Panza, G. F., Soloviev, A. A., Aoudia, A., & Peresan, A. (2009). Delineation of the geometry of the nodes in the Alps-Dinarides hinge zone and recognition of seismogenic nodes (M ≥ 6.0). Terra Nova, 21, 257–264.  https://doi.org/10.1111/j.1365-3121.2009.00879.x.CrossRefGoogle Scholar
  17. Gorshkov, A. I., Soloviev, A. A., Jiménez, M. J., García-Fernández, M., & Panza, G. F. (2010). Recognition of earthquake-prone areas (M & #x2265; 5.0) in the Iberian Peninsula. Rendiconti Lincei Scienze Fisiche e Naturali., 21, 131–162.  https://doi.org/10.1007/s12210-010-0075-3.CrossRefGoogle Scholar
  18. Grellet, B., Combes, P., Granier, T., Philip, H., & Mohammadioun, B. (1993). Sismotectonique de la France Me´tropolitaine dans son cadre ge´ologique et ge´ophysique avec atlas de 23 cartes au 1/4.000.000 ie`me et une carte au 1/1.000.000ie`me. Mémoire de la société géologique de France, 164(2), 1–76.Google Scholar
  19. Hudnut, K. W., Seeber, L., & Pacheo, J. (1989). Cross-fault triggering in the November 1987 Superstition Hills earthquake sequence, Southern California. Geophysical Research Letters, 16, 199–202.CrossRefGoogle Scholar
  20. King, G. (1983). The accommodation of large strains in the upper lithosphere of the Earth and other solids by self-similar fault systems: The geometrical origin of b-value. Pure and Applied Geophysics, 121, 761–815.CrossRefGoogle Scholar
  21. King, G. (1986). Speculations on the geometry of the initiation a termination processes of earthquake rupture and its relation to morphology and geological structure. Pure and Applied Geophysics, 124, 567–583.CrossRefGoogle Scholar
  22. Kossobokov, V. G., & Nekrasova, A. K. (2012). Global Seismic Hazard Assessment Program Maps are Erroneous. Seismic Instruments., 48(2), 162–170.  https://doi.org/10.3103/s0747923912020065.CrossRefGoogle Scholar
  23. Kossobokov, V., Peresan, A., & Panza, G. F. (2015). Reality Check: Seismic Hazard Models You Can Trust. EOS, 96(13), 9–11.Google Scholar
  24. Lasserre, C., Gaudemer, Y., Tapponnier, P., Me´riaux, A. S., Van der Woerd, J., & Yuan Daoyang, F. J. (2002). Fast late Pleistocene slip rate on the Leng Long Ling segment of the Haiyuan fault, Qinghai. China. Journal of Geophysical Research., 107, 4.  https://doi.org/10.1029/2000JB000060.CrossRefGoogle Scholar
  25. Levret, A., Back, J.-C., & Cushing, M. (1994). Atlas of macroseismic maps for French earthquakes with their principal characteristics. Natural Hazards, 10, 19–46.CrossRefGoogle Scholar
  26. Marin, S., Avouac, J.-P., Marc Nicolas, M., & Schlupp, A. (2004). A Probabilistic approach to seismic hazard in metropolitan France. Bulletin of the Seismological Society of America, 94(6), 2137–2163.CrossRefGoogle Scholar
  27. Mazabraud, Y., Be´thoux, N., & Deroussi, S. (2005). Characterisation of the seismological pattern in a slowly deforming intraplate region: Central and western France. Tectonophysics, 409, 175–192.CrossRefGoogle Scholar
  28. Nicolas, M., Santoire, J. P., & Delpech, P. Y. (1990). Intraplate seismicity: new seismotectonic data in Western Europe. Tectonophysics, 179, 27–53.CrossRefGoogle Scholar
  29. Panza, G. F., Kossobokov, V., Peresan, A., & Nekrasova, A. (2014). Chapter 12. Why are the standard probabilistic methods of estimating seismic hazard and risks too often wrong? In M. Wyss & J. Shroder (Eds.), Earthquake Hazard Risk and Disasters (pp. 309–357). London: Elsevier.CrossRefGoogle Scholar
  30. Peresan, A., Gorshkov, A., Soloviev, A., & Panza, G. F. (2015). The contribution of pattern recognition of seismic and morphostructural data to seismic hazard assessment. Bollettino di Geofisica Teorica ed Applicata., 1, 33.  https://doi.org/10.4430/bgta0141.CrossRefGoogle Scholar
  31. San’kov, V., Déverchère, J., Gaudemer, Y., & Houdry, F. (2000). Geometry and rate of faulting in the North Baikal Rift. Siberia. Tectonics, 19(4), 707–722.CrossRefGoogle Scholar
  32. Schlupp, A., Avouac, J. P., & Clauzon, G. (2001). Post-Messinian activity of the Nimes fault. Mémoire de la société géologique de France, 172, 697–711.CrossRefGoogle Scholar
  33. Scotti, O., Baumont, D., Quenet, G., & Levret, A. (2004). The French macroseismic database SISFRANCE: objectives, results and perspectives. Annals of Geophysics, 47(2/3), 571–581.Google Scholar
  34. SisFrance (2008). Base données de sismicité historique franҫaise. BRGM, EDF, ISRN. http://www.sisfrance.net. Accessed 19 March 2010.
  35. Soloviev, A. A., Gvishiani, A. D., Gorshkov, A. I., Dobrovolsky, M. N., & Novikova, O. V. (2014). Recognition of Earthquake-Prone Areas: Methodology and Analysis of the Results. Izvestiya, Physics of the Solid Earth., 50, 151–168.  https://doi.org/10.1134/S1069351314020116.CrossRefGoogle Scholar
  36. Stein, S., Geller, R., & Liu, M. (2012). Why earthquake hazard maps often fail and what to do about it. Tectonophysics, 562–563, 1–25.CrossRefGoogle Scholar
  37. Talwani, P. (1988). The intersection model for intraplate earthquakes. Seismological Research Letters, 59, 305–310.Google Scholar
  38. Talwani, P. (1999). Fault geometry and earthquakes in continental interiors. Tectonophysics, 305, 371–379.CrossRefGoogle Scholar
  39. Van der Woerd, J., Ryerson, J. F. J., Tapponnier, P., Gaudemer, Y., Finkel, R., Me´riaux, A. S., et al. (1998). Holocene left-slip rate determined by cosmogenic surface dating on the Xidatan segment of the Kunlun fault (Qinghai, China). Geology, 26, 695–698.CrossRefGoogle Scholar
  40. Vigny, C., Chéry, J., Duquesnoy, T., Jouanne, F., Ammann, J., Anzidei, M., et al. (2002). GPS network monitors the Western Alps’ deformation over a five-year period: 1993-199. Journal of Geodesy, 76(2), 63–76.CrossRefGoogle Scholar
  41. Wells, D. L., & Coppersmith, K. J. (1994). New empirical relationships among magnitude, rupture length, rupture width, and surface displacement. Bulletin of the Seismological Society of America, 84, 974–1002.Google Scholar
  42. Wyss, M., Nekrasova, A., & Kossobokov, V. (2012). Errors in expected human losses due to incorrect seismic hazard estimates. Natural Hazards, 63, 927–935.  https://doi.org/10.1007/s11069-012-0125-5.CrossRefGoogle Scholar
  43. Zonage sismique de la France (2011) http://www.planseisme.fr. Accessed 14 March 2016.

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Institute of Earthquake Prediction Theory and Mathematical GeophysicsMoscowRussia
  2. 2.Institute de Physique du Globe de Paris, Sorbonne Paris Cité, Univ. Paris Diderot, UMR 7154, CNRSParis, Cedex 05France

Personalised recommendations