Advertisement

Journal of Iberian Geology

, Volume 44, Issue 3, pp 479–496 | Cite as

Swimming reptile prints from the Keuper facies (Carnian, Upper Triassic) of Los Gallegos new tracksite (Iberian Range, Valencia province, Spain)

  • Óscar Navarro
  • Jose J. Moratalla
Research Paper

Abstract

A new locality of Carnian reptile tracks (Upper Triassic) is described from the Manuel Sandstone Formation (Keuper facies). The track-bearing layer is located in the Los Gallegos creek (municipality of Cortes de Pallás, Valencia province) and the prints are preserved as natural casts. The tracks are isolated and, although there are certain alignments, these do not constitute trackways. Most of the prints are made up of sub-parallel digital marks. The number of digits and their size is variable, being tetradactyl the most complete ones. In some cases, the heel area has been preserved, although the impression of the V toe has never been so. No handprints have been found either. This preservation does not allow precise identification, although general characters as well as age suggest that these tracks may be related to the chirotheroid group and therefore, with archosauriform or archosaur crurotarsal reptiles. The characteristics of sediment, footprints and the presence of structures such as digit reflectures, Z-traces, posterior overhangs and longitudinal striations suggest that the ichnites were produced by swimming, totally or partially buoyant reptiles in a context dominated by a fluvial system with restricted marine influence during the Carnian Humid Episode.

Keywords

Paleoichnology Swim tracks Reptiles Triassic Carnian Spain 

Resumen

Se describe un nuevo yacimiento de huellas de reptiles de edad Carniense (Triásico Superior), pertenecientes a la formación Areniscas de Manuel (Facies Keuper). Las capas que contienen las icnitas, preservadas como moldes, afloran en el margen de la rambla de Los Gallegos (municipio de Cortes de Pallás, provincia de Valencia). A pesar de apreciarse una vaga alineación entre algunas huellas, estas no se agrupan formando rastros. La mayoría de las icnitas consisten en marcas digitales subparalelas. El número de impresiones digitales registradas en cada huella y sus dimensiones son variables, si bien las más completas son tetradáctilas. En algunos casos se ha preservado la impresión del talón, aunque en estos casos no existe registro del dedo V. No se ha podido identificar ninguna marca de mano. El tipo de preservación observada no permite una identificación precisa, si bien los rasgos generales y la edad asignada a este yacimiento sugieren que los productores podrían estar relacionados con el grupo quiroteroide y, por tanto, con reptiles arcosauriformes o arcosaurios crurotarsales. Las características del sustrato, de las icnitas y la presencia de ciertos rasgos característicos como flexuras digitales, trazas digitales en Z, proyecciones digitales posteriores y estrías longitudinales sugieren que las huellas fueron producidas por reptiles que se desplazaban en un régimen de natación o semi-natación en un medio fluvial con cierta influencia marina durante el Episodio Húmedo del Carniense.

Palabras clave

Paleoicnología Huellas de natación Reptiles Triásico Carniense España 

Notes

Acknowledgements

We thank Armand Pascual Roldán, who took the detailed pictures of the tracks and helped in computing the 3-D model of sector A. Charles Colón, who reviewed the English version of the text, is also thanked. We are also grateful to the two referees, Matías Reolid and Alberto Pérez López, whose suggestions have greatly improved the manuscript.

Supplementary material

41513_2018_68_MOESM1_ESM.pdf (7.5 mb)
Supplementary material 1 (PDF 7714 kb) Online resource 1. Annotated sketches of sector A showing the code assigned to the studied specimens
41513_2018_68_MOESM2_ESM.zip (15.2 mb)
Supplementary material 2 (ZIP 15611 kb) Online resource 2. PLY files containing the 3D models of the specimens in sector A

References

  1. Arche, A., Gómez, J. L., & Hidalgo, J. G. (2002). Control climático, tectónico y eustático en depósitos del Carniense (Triásico Superior) del SE de la Península Ibérica. Journal of Iberian Geology, 28, 1330.Google Scholar
  2. Arche, A., & López-Gómez, J. (2014). The Carnian pluvial event in Western Europe: New data from Iberia and correlation with the Western Neotethys and Eastern North America-NW Africa regions. Earth-Science Reviews, 128, 196–231.CrossRefGoogle Scholar
  3. Arnal, I., Calvet, F., Márquez, L., Márquez-Aliaga, A., & Solé de Porta, N. (2002). La plataforma carbonatada epeírica (Formaciones Imón e Isábena) del Triásico superior del Noreste de la Península Ibérica. Acta Geológica Hispánica, 37(4), 299–328.Google Scholar
  4. Berra, F. (2012). Sea-level fall, carbonate production, rainy days: How do they relate? Insight from Triassic carbonate platforms (Western Tethys, Southern Alps, Italy). Geology, 40, 271–274.CrossRefGoogle Scholar
  5. Berrocal-Casero, M., Arribas, M., & Moratalla, J. J. (2017). Didactic and divulgative resources of the Middle Triassic Vertebrate Tracksite of Los Arroturos (Province of Guadalajara, Spain). Geoheritage.  https://doi.org/10.1007/s12371-017-0244-1.Google Scholar
  6. Brussatte, S. L., Nesbitt, S. J., Irmis, R. B., Butler, R. J., Benton, M. J., & Norell, M. A. (2010). The origin and early radiation of dinosaurs. Earth-Science Reviews, 101, 68–100.CrossRefGoogle Scholar
  7. Buatois, L. A., Gingras, M. K., MacEachern, J., Mángano, M. G., Zonneveld, J. P., Pemberton, S. G., et al. (2005). Colonization of brackish-water systems through time: Evidence from the trace-fossil record. Palaios, 20(4), 321–347.CrossRefGoogle Scholar
  8. Calafat, F., Fornós, J. J., Marzo, M., Ramos-Guerrero, E., & Rodríguez-Perea, A. (1986). Icnología de vertebrados de la facies Bundtsandstein de Mallorca. Acta Geológica Hispánica, 21–22, 515–520.Google Scholar
  9. Calzada, S. (1987). Niveles fosilíferos de las facies Buntsandstein (Trías) en el sector norte de los Catalánides. Cuadernos de Geología Ibérica, 11, 256–271.Google Scholar
  10. Casanovas, M. L., Santafé, J. V., & Gómez-Alba, J. (1979). Presencia de Chirotherium en el Triásico catalán. Bull. Inf. Inst. Pal. Sabadell, 11(1–2), 34–43.Google Scholar
  11. de Lapparent, A. F. (1966). Noveaux gisements de Reptiles Mesozoiques en Espagne. Notas y Comunicaciones del Inst. Geol. y Minero de España, 84, 103–110.Google Scholar
  12. Demathieu, G. R., Pérez-López, A., & Pérez-Lorente, F. (1999). Enigmatic Ichnites in the Middle Triassic of Southern Spain. Ichnos, 6(4), 229–237.CrossRefGoogle Scholar
  13. Díaz-Martínez, I., Castanera, D., Gasca, J. M., & Canudo, J. I. (2015). A reappraisal of the Middle Triassic chirotheriid Chirotherium ibericus Navás, 1906 (Iberian Range NE Spain), with comments on the Triassic tetrapod track biochronology of the Iberian Peninsula. PeerJ.  https://doi.org/10.7717/peerj.1044.Google Scholar
  14. Fraser, N. C. (2006). Dawn of the Dinosaurs, life in the Triassic. Bloomington: Indiana University Press.Google Scholar
  15. Furin, S., Preto, N., Rigo, M., Roghi, G., Gianolla, P., Crowley, J. L., et al. (2006). High precision U-Pb zircon age from the Triassic of Italy: Implications for the Triassic time scale and the Carnian origin of calcareous nannoplankton and dinosaurs. Geology, 34, 1009–1012.CrossRefGoogle Scholar
  16. Gómez de Llarena, J. (1917). La estratigrafía del Moncayo. Boletín de la Real Sociedad Española de Historia Natural, 17, 568–572.Google Scholar
  17. Haubold, H. (1983). Archosaur evidence in the Buntsandstein (Lower Triassic). Acta Palaeontologica Polonica, 28(1–2), 123–132.Google Scholar
  18. Henares, S., Caracciolo, L., Cultrone, G., Fernández, J., & Viseras, C. (2014). The role of diagenesis and depositional facies on pore system evolution in a Triassic outcrop analogue (SE Spain). Marine and Petroleum Geology, 51, 136–151.CrossRefGoogle Scholar
  19. Hunt, A. P & Lucas, S. G. (2007). The Triassic tetrapod record: Ichnofaunas, ichnofacies and biocronology. In Lucas, S. G., & Spielmann, J. A. (Eds.) The Global Triassic. New Mexico Museum of Natural History and Science Bulletin 41, pp. 78–87.Google Scholar
  20. Klein, H., & Haubold, H. (2007). Archosaur footprints-potential for biochronology of Triassic continental sequences. New Mexico Museum of Natural History and Science Bulletin, 41, 120–130.Google Scholar
  21. Lammers, G. E. (1964). Reptile tracks and the paleoenvironments of the Triassic Moenkopi of Capitol Reef National Monument, Utah. In Contributions to the geology of northern Arizona: Major Brady Memorial Museum Northern Arizona Bulletin, 40, 49–55.Google Scholar
  22. Lapparent, A. F., Joncour, M. L., Mathieu, A., & Plus, B. (1965). Découverte en Espagne d’empreintes de pas de Reptiles mésozoiques. Boletín de la Real Sociedad Española de Historia Natural. Sección Geológica, 63, 225–230.Google Scholar
  23. Lendínez, A., & Tena Dávila, A. (1980). Mapa y memoria explicativa de la Hoja 740 (Jalance) del Mapa Geológico de España, a escala 1:50.000 (2ª Serie). Madrid: IGME.Google Scholar
  24. Leonardi, P. (1959). Orme Chirotheriane Triassiche Spagnole. Estudios Geológicos, 15, 235–245.Google Scholar
  25. Lockley, M. G. (1991). Tracking Dinosaurs, a new look at an ancient world. Cambridge: Cambridge University Press.Google Scholar
  26. Lockley, M. G., & Meyer, C. (2000). Dinosaur tracks and other fossil footprints of Europe. New York: Columbia University Press.Google Scholar
  27. López-Gómez, J., Escudero-Mozo, M. J., Martín-Chivelet, J., Arche, A., Lago, M., & Galé, C. (2017). Western Tethys continental-marine responses to the Carnian Humid Episode: Palaeoclimatic and palaeogeographic implications. Global and Planetary Change, 148, 79–95.CrossRefGoogle Scholar
  28. McAllister, J. A. (1989). Dakota Formation tracks from Kansas: Implications for the recognition of tetrapod subaequous traces. In D. D. Gillete & M. G. Lockley (Eds.), Dinosaur tracks and traces (pp. 343–348). Cambridge: Cambridge University Press.Google Scholar
  29. McAllister, J. A., & Kirby, J. (1998). An occurrence of reptile subaqueous traces in the Moenkopi Formation (Triassic) of Capitol Reef National Park, south central Utah, USA. Journal of Pennsylvania Academy of Science, 71(Suppl. and Index), 174–181.Google Scholar
  30. Meléndez, N., & Moratalla, J. J. (2014). Los Arroturos: New reptile tracksite from the Muschelkalk (Middle Triassic) of Paredes de Sigüenza (Guadalajara province, Spain). In 74th annual meeting society of vertebrate paleontology, Berlin, p. 186.Google Scholar
  31. Milner, A. R., Lockley, M. G., & Kirkland, J. I. (2006). A large collection of well-preserved theropod dinosaur swim tracks from the Lower Jurassic Moenave Formation, St. George, Utah. The Triassic-Jurassic Terrestrial Transition. New Mexico Museum of Natural History and Science Bulletin, 37, 315–328.Google Scholar
  32. Moratalla, J. J., Sanz, J. L., & Jiménez, S. (1997). Dinosaurios en La Rioja. Gobierno de La Rioja e Iberdrola: Guía de yacimientos paleoicnológicos.Google Scholar
  33. Mujal, E., Fortuny, J., Rodríguez-Salgado, P., Diviu, M., Oms, O., & Galobart, A. (2015). First footprint ocurrence from the Muschelkalk detritical unit of the Catalan Basin: 3D analyses and palaeichnological implications. Spanish Journal of Palaeontology, 30(1), 97–108.Google Scholar
  34. Navás, L. (1906). Novedades zoológicas de Aragón. Boletín de la Sociedad Aragonesa de Ciencias Naturales, 5, 199–213.Google Scholar
  35. Ogg, J. G. (2015). The mysterious Mid-Carnian “Wet Intermezzo” global event. Journal of Earth Sciences, 26, 181–191.Google Scholar
  36. Ortí, F. (1974). El Keuper del Levante español. Estudios Geológicos, 30, 7–46.Google Scholar
  37. Ortí, F. (1987). Aspectos sedimentológicos de las evaporitas del Triásico y Liásico inferior en el E. de la Península Ibérica. Cuadernos de Geología Ibérica, 11, 837–858.Google Scholar
  38. Ortí, F. (2004). Últimas etapas de actividad del rifting. Sedimentos asociados. In J. A. Vera (Ed.), Geología de España (pp. 492–495). Madrid: SGE-IGME.Google Scholar
  39. Ortí, F., Pérez-López, A., & Salvany, J. M. (2017). Triassic evaporites of Iberia: Sedimentological and palaeogeographical implications for the western Neotethys evolution during the Middle Triassic-Early Jurassic. Palaeogeography, Palaeoclimatology, Palaeocology, 471, 157–180.CrossRefGoogle Scholar
  40. Parrish, J. M. (1997). Evolution of the Archosaurs. In J. O. Farlow & M. K. Brett-Surman (Eds.), The complete dinosaur (pp. 191–203). Bloomington: Indiana University Press.Google Scholar
  41. Pascual-Arribas, C., & Latorre-Macarrón, P. (2000). Huellas de Eubrontes y Anchisauripus en Carrascosa de Arriba (Soria, España). Boletín Geológico y Minero, 111(1), 21–32.Google Scholar
  42. Peabody, F. E. (1948). Reptile and amphibian trackways from the Lower Triassic Moenkopi Formation of Arizona and Utah. Bulletin of the Department of Geological Sciences, 27, 295–468.Google Scholar
  43. Peabody, F. E. (1956). Ichnites from the Triassic Moenkopi Formation of Arizona and Utah. Journal of Palaeontology, 30, 731–740.Google Scholar
  44. Pérez-Hidalgo, T., & José, T. (1990). Primeros resultados de unas dataciones palinológicas en el Keuper de la Rama Castellana de la Cordillera Ibérica, Prebético y Subbético frontal. Formaciones evaporíticas de la Cuenca del Ebro y cadenas periféricas, y de la zona de Levante: Nuevas aportaciones y guía de superficie (pp. 219–223). Barcelona: Enresa.Google Scholar
  45. Pérez-López, A. (1993). Estudio de las huellas de reptil, del icnogénero Brachythirotherium, encontradas en el Trias subético de Cambril. Estudios Geológicos, 49, 77–86.Google Scholar
  46. Pérez-Lorente, F. (2015). Dinosaur Footprints & Trackways of La Rioja. Bloomington: Indiana University Press.Google Scholar
  47. Reolid, M., Márquez-Aliaga, A., Belinchón, M., García-Forner, A., Villena, J., & Martínez-Pérez, C. (2018). Ichnological evidence of semi-aquatic locomotion in early turtles from eastern Iberia during the Carnian Humid Episode (Late Triassic). Palaeogeography, Palaeoclimatology, Palaeoecology, 490, 450–461.CrossRefGoogle Scholar
  48. Reolid, J., & Reolid, M. (2017). Traces of floating archosaurs: An interpretation of the enigmatic trace fossils from the triassic of the tabular cover of Southern Spain. Ichnos.  https://doi.org/10.1080/10420940.2016.1265524.Google Scholar
  49. Ruffell, A., Simms, M. J., & Wignall, P. B. (2016). The Carnian humid episode of the Late Triassic: A review. Geological Magazine, 153, 271–284.CrossRefGoogle Scholar
  50. Seilacher, A. (1964). Biogenic sedimentary structures. In J. Imbrie & N. Newell (Eds.), Approaches to paleoecology (pp. 296–316). New York: Wiley.Google Scholar
  51. Seilacher, A. (1967). Bathymetry of trace fossils. Marine Geology, 5, 413–429.CrossRefGoogle Scholar
  52. Solé de Porta, N., & Ortí, F. (1982). Primeros datos cronoestratigráficos de las series evaporíticas del Triásico Superior de Valencia (España). Acta Geológica Hispánica, 17, 185–191.Google Scholar
  53. Thomson, T. J., & Droser, M. L. (2015). Swimming reptiles make their mark in the Early Triassic: Delayed ecologic recovery increased the preservation potential of vertebrate swim tracks. Geology, 43(3), 215–218.CrossRefGoogle Scholar
  54. Thomson, T. J., & Lovelace, D.,M. (2014). Swim track morphotypes and new track localities from the Moenkopi and Red Peak formations (lower-middle Triassic) with preliminary interpretations of aquatic behaviors. In Lockley, M. G., & Lucas, S. G. (Eds.) Fossil footprints of western North America: New Mexico Museum of Natural History and Science Bulletin 62, pp. 103–128.Google Scholar
  55. Whyte, M. A., & Romano, M. (2001). A dinosaur ichnocoenosis from the Middle Jurassic of Yorkshire. Ichnos, 8(3–4), 223–234.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.MislataSpain
  2. 2.Instituto Geológico y Minero de España (IGME), Museo GeomineroMadridSpain

Personalised recommendations