Advertisement

Journal of Iberian Geology

, Volume 43, Issue 4, pp 539–557 | Cite as

Organochlorine pesticides in protected areas: El Hito Lake (Cuenca, Central Spain)

  • Yolanda Sánchez-Palencia
  • José E. Ortiz
  • Trinidad Torres
  • Juan Llamas
Research paper

Abstract

Background

El Hito Lake is an ephemeral saline water mass present most of the year as a gypsiferous salt pan that is temporarily flooded during rainy periods, when it becomes a refuge for migratory birds such as flamingos and cranes, among others. It is considered an important hotspot of biodiversity and as such is covered by protection status.

Purpose

In order to check the environmental condition of the lake and determine the spatial distribution and source of organochlorine pesticides (OCPs), we performed a detailed soil and sediment sampling campaign with the catchment and dry lake bottom.

Methods

We present the first environmental evaluation of its current state with respect to OCPs: hexachlorobenzene (HCB), hexachlorocyclohexanes (α-, β-, γ- and δ-HCH), dichlorodiphenyltrichloroethane (DDT) and its metabolites (DDE and DDD), and cyclodienes (aldrin, dieldrin, endrin, endrin aldehyde, endrin ketone, α-chlordane, γ-chlordane, endosulfan I, endosulfanII, endosulfan sulphate, heptachlor, heptachlor epoxide B and metoxichlor).

Results

Some of the compounds showed concentrations above the soil screening levels (SSLs) for human health and ecosystems: γ-HCH (100 μg/kg), α-HCH (60 μg/kg), endrin (30 μg/kg), aldrin (30 μg/kg) and heptachlor epoxide B (30 μg/kg). Various indices were used to determine the origin of the compounds.

Conclusion

Historical uses were interpreted, although there were traces of recent input. Distribution maps of concentration and indices demonstrate a relationship between farming and cropping and the maxima observed, being possible that OCPs have influence in living beings, especially birds.

Keywords

Organochlorine pesticides Lacustrine sediments Soil contamination SSL POPs 

Resumen

Antecedentes

La Laguna de El Hito es un humedal salino y efímero que aparece la mayor parte del año como un salar yesífero en el que se acumula agua durante periodos lluviosos y se convierte en refugio de aves migratorias como flamencos y grullas, entre otros. Se considera un lugar de importancia para la biodiversidad y por ello está protegido por diversas directivas.

Objetivos

Se realizó una campaña de muestreo de los suelos de la cuenca y de los sedimentos del fondo de la laguna con el objetivo de conocer su estado ambiental y determinar la distribución espacial y el origen de los pesticidas organoclorados (OCP).

Métodos

Se presenta la primera evaluación del estado actual de la laguna respecto a los OCP: hexaclorobenzeno (HCB), hexaclorociclohexanos (α-, β-, γ- y δ-HCH), diclorodifeniltricloroetano (DDT) y sus metabolitos (DDE y DDD), y los ciclodienos (aldrín, dieldrín, endrín, endrín aldehido, endrín cetona, α-clordano, γ-clordano, endosulfán I, endosulfánII, endosulfán sulfato, heptacloro, heptacloro epóxido B y metoxicloro).

Resultados

Algunos compuestos mostraron concentraciones por encima de los Niveles Genéricos de Referencia (NGR) para la salud humana y los ecosistemas: γ-HCH (100 μg/kg), α-HCH (60 μg/kg), endrín (30 μg/kg), aldrín (30 μg/kg) y heptacloro epóxido B (30 μg/kg). Se emplearon varios índices para determinar el origen de estos compuestos.

Conclusiones

Se interpretó un uso histórico, aunque en algunos casos con un origen reciente. Los mapas de distribución mostraron la alta correspondencia entre la agricultura y ganadería con máximos observados, siendo posible que los pesticidas tengan influencia nociva en los organismos, especialmente en las aves.

Palabras clave

Pesticidas organoclorados sedimentos lacustres suelos contaminados NGR POP 

Notes

Acknowledgements

This work was supported by Empresa Nacional de Residuos Radiactivos (ENRESA) through Project P0079000214: “Estado Geoquímico y Evolución Ambiental de la Laguna de El Hito como Nivel de Referencia Ambiental del Entorno del ATC”.

References

  1. Agencia Estatal Boletín Oficial del Estado, BOE. (1976). https://www.boe.es/boe/dias/1976/05/21/pdfs/A09810-09811.pdf Accessed 1 Nov 2017.
  2. Agencia Estatal Boletín Oficial del Estado, BOE. (1994). https://www.boe.es/boe/dias/1994/02/17/pdfs/A05132-05132.pdf Accessed 1 Nov 2017.
  3. Agencia Estatal Boletín Oficial del Estado, BOE. (2013). http://www.boe.es/boe/dias/2013/12/30/pdfs/BOE-A-2013-13757.pdf Accessed 1 Nov 2017.
  4. Arienzo, M., Albanese, S., Lima, A., Cannatelli, C., Aliberti, F., Cicotti, F., et al. (2015). Assessment of the concentrations of polycyclic aromatic hydrocarbons and organochlorine pesticides in soils from the Sarno River basin, Italy, and ecotoxicological survey by Daphnia magna. Environmental Monitoring and Assessment, 187, 1–14.  https://doi.org/10.1007/s10661-015-4272-5.CrossRefGoogle Scholar
  5. ATSDR. (1996). Toxicological profile for endrin. U.S. Department of Health and Human Services. Public Health Service Agency for Toxic Substances and Disease Registry, Atlanta, Georgia.Google Scholar
  6. ATSDR. (2002a). Toxicological profile for DDT, DDE and DDD. U.S. Department of Health and Human Services. Public Health Service Agency for Toxic Substances and Disease Registry, Atlanta, Georgia.Google Scholar
  7. ATSDR. (2002b). Toxicological profile for aldrin and dieldrin. U.S. Department of Health and Human Services. Public Health Service Agency for Toxic Substances and Disease Registry, Atlanta, Georgia.Google Scholar
  8. ATSDR. (2005). Toxicological profile for alpha-, beta-, gamma-, and delta-hexachlorocyclohexane. U.S. Department of Health and Human Services. Public Health Service Agency for Toxic Substances and Disease Registry, Atlanta, Georgia.Google Scholar
  9. Bidleman, T. F., Jantunen, L. M. M., Helm, P. A., Brorstrom-Lunden, E., & Juntto, S. (2002). Chlordane enantiomers and temporal trends of chlordane isomers in arctic air. Environmental Science and Technology, 36, 539–544.CrossRefGoogle Scholar
  10. Cirujano, S. (1995). Flora y vegetación de las lagunas y humedales de la provincia de Cuenca. Madrid: Junta de Comunidades de Castilla-La Mancha y Real Jardín Botánico, CSIC.Google Scholar
  11. Cirujano, S., Medina, L., & Chirino, M. (2002). Plantas acuáticas de las lagunas y humedales de Castilla-La Mancha. Madrid: Junta de Comunidades de Castilla-La Mancha y Real Jardín Botánico, CSIC.Google Scholar
  12. Daly, G. L., Lei, Y. D., Muir, D. C. G., Castillo, L. E., & Wania, F. (2007). Polycyclic aromatic hydrocarbons in Costa Rican air and soil: A tropical/temperate comparison. Atmospheric Environment, 41, 7339–7350.CrossRefGoogle Scholar
  13. Deinlein, M. (1998). When it comes to pesticides, birds are sitting ducks. Smithsonian’s National Zoo & Conservation Biology Institute. https://nationalzoo.si.edu/migratory-birds/news/when-it-comes-pesticides-birds-are-sitting-d. Accessed 22 Jan 2016.
  14. Dirección General de Calidad y Evaluación Ambiental, Ministerio de Medio Ambiente. (2007). Guía Técnica de aplicación del RD 9/2005, de 14 de enero, por el que se establece la relación de actividades potencialmente contaminantes del suelo y los criterios y estándares para la declaración de suelos contaminados. http://www.mapama.gob.es/es/calidad-y-evaluacion-ambiental/temas/sueloscontaminados/guia_tecnica_contaminantes_suelo_declaracion_suelos_tcm7-3204.pdf. Accessed 10 Sep 2015.
  15. Doong, R. A., Sun, Y. C., Liao, P. L., & Peng, C. K. (2002). Distribution and fate of organochlorine pesticide residues in sediments from the selected rivers in Taiwan. Chemosphere, 48, 237–246.CrossRefGoogle Scholar
  16. El Nemr, A., Moneer, A. A., Khaled, A., & El-Sikaily, A. (2012). Levels, distribution, and risk assessment of organochlorines in surficial sediments of the Red Sea coast, Egypt. Environmental Monitoring and Assessment, 185, 4835–4853.CrossRefGoogle Scholar
  17. El-Naggar, N. A., Emara, H. I., Rifaat, A. E., Said, T. O., Abou-Shahba, R. M., Shaltout, N. A., et al. (2013). Some anthropogenic driven toxic pollutants in El-Mex Bay and its neighborhood, Alexandria, Egypt. World Applied Sciences Journal, 21, 1512–1520.Google Scholar
  18. EPA. (1998). Method 3545A pressurized fluid extraction (PFE) https://www.epa.gov/sites/production/files/2015-06/documents/epa-3545a.pdf Accessed 29 Nov 2014.
  19. FAO. (2015). Prevention and disposal of obsolete pesticides. http://www.fao.org/agriculture/crops/obsolete-pesticides/prevention-and-disposal-of-obsolete-pesticides/en/. Accessed 16 Nov 2015.
  20. Fernández, J., Arjol, M. A., & Cacho, C. (2013). POP-contaminated sites from HCH production in Sabiñánigo, Spain. Environmental Science and Pollution Research, 20, 1937–1950.CrossRefGoogle Scholar
  21. Fry, D. M. (1995). Reproductive effects in birds exposed to pesticides and industrial chemicals. Environmental Health Perspectives, 103, 165–171.CrossRefGoogle Scholar
  22. Furness, R. W. (1993). Birds as monitors of pollutants. In R. W. Furness & J. J. D. Greenwood (Eds.), Birds as monitors of environmental change (pp. 87–143). London: Chapman and Hall.CrossRefGoogle Scholar
  23. Gao, J., Zhou, H., Pan, G., Wang, J., & Chen, B. (2013). Factors influencing the persistence of organochlorine pesticides in surface soil from the region around the Hongze Lake, China. Science of the Total Environment, 443, 7–13.CrossRefGoogle Scholar
  24. GESAMP. (1993). Impact of oil and related chemicals and wastes on the marine environment. Report Studies, 50, 1–180.Google Scholar
  25. Gilman, A. P., Peakall, D. B., Hallett, D. J., Fox, G. A., & Norstrom, R. J. (1979). Herring gulls (Larus argentatus) as monitors of contamination in the Great Lakes. In F. Peter, P. Timmins, & D. Perry (Eds.), Animals as monitors of environmental pollution (pp. 280–289). Washington DC: National Academy of Sciences.Google Scholar
  26. Gong, X., Qi, S., Wang, Y., Julia, E. B., & Chunling, L. (2007). Historical contamination and sources of organochlorine pesticides in sediment cores from Quanzhou Bay, Southeast China. Marine Pollution Bulletin, 54, 1434–1440.CrossRefGoogle Scholar
  27. González, M. J., Fernández, M. A., & Hernández, L. M. (1991). Levels of chlorinated insecticides, total PCBs and PCB congeners in Spanish gull eggs. Archives of Environmental Contamination and Toxicology, 20, 343–348.CrossRefGoogle Scholar
  28. Gouin, T., Mackay, D., Webster, E., & Wania, F. (2000). Screening chemicals for persistence in the environment. Environmental Science and Technology, 34, 881–884.CrossRefGoogle Scholar
  29. Guitart, R., Clavero, R., Mateo, R., & Martínez, M. (2005). Levels of persistent organochlorine residues in eggs of greater flamingos from the Guadalquivir marshes (Doñana), Spain. Journal of Environmental Science and Health, 40, 753–760.CrossRefGoogle Scholar
  30. Hitch, R. K., & Day, H. R. (1992). Unusual persistence of DDT in some Western USA soils. Bulletin of Environmental Contamination and Toxicology, 48, 259–264.CrossRefGoogle Scholar
  31. Holder, J. (1986). Assessment of the carcinogenicity of dicofol (kelthane (trade name)), DDT, DDE, and DDD (TDE). Washington DC: U.S. Environmental Protection Agency.Google Scholar
  32. Hu, Y., Yuan, L., Qi, S., Liu, H., & Xing, X. (2014). Contamination of organochlorine pesticides in water and sediments from a waterbird-inhabited lake, East Central China. Environmental Science and Pollution Research, 21, 9376–9384.  https://doi.org/10.1007/s11356-014-2831-x.CrossRefGoogle Scholar
  33. Huang, S., Qiao, M., Wang, H., & Wang, Z. (2006). Organochlorinated pesticides in surface sediments of Meiliang Bay in Taihu Lake, China. Journal of Environmental Science and Health Part A, 41, 223–234.CrossRefGoogle Scholar
  34. James, R. R., McDonald, J. G., Symonik, D. M., Swackhamer, D. L., & Hites, R. A. (2001). Volatilization of toxaphene from Lakes Michigan and Superior. Environmental Science and Technology, 35, 3653–3660.CrossRefGoogle Scholar
  35. Jiang, Y. F., Wang, X. T., Jia, Y., Wang, F., Wu, M. H., Sheng, G. Y., et al. (2009). Occurrence, distribution and possible sources of organochlorine pesticides in agricultural soil of Shanghai, China. Journal of Hazardous Materials, 170, 989–997.CrossRefGoogle Scholar
  36. Li, Y. F. (1999). Global technical hexachlorocyclohexanes age and its contamination consequences in environment from 1948 to 1997. Science of the Total Environment, 232, 123–160.CrossRefGoogle Scholar
  37. Liu, W. J., Chen, D., Liu, X. D., Zheng, X. Y., Yang, W., Westgate, J. N., et al. (2010). Transport of semi volatile organic compounds to the Tibetan Plateau: Spatial and temporal variation in air concentrations in mountainous Western Sichuan, China. Environmental Science and Technology, 44, 1559–1565.CrossRefGoogle Scholar
  38. Liu, W. X., He, W., Qin, N., Kong, X. Z., He, Q. S., Ouyang, H. L., et al. (2012). Residues, distributions, sources, and ecological risks of OCPs in the water from Lake Chaohu, China. The Scientific World Journal.  https://doi.org/10.1100/2012/897697.Google Scholar
  39. Liu, W. X., Li, Y., Zuo, Q., Liu, S. Z., & Tao, S. (2008). Residual characteristics of HCHs and DDTs in surface soils from the western zone of Bohai Bay. Acta Scientiae Circumstantiae, 28, 142–149.Google Scholar
  40. Luzardo, O. P., Ruiz-Suárez, N., Henríquez-Hernández, L. A., Valerón, P. F., Camacho, M., Zumbado, M., et al. (2014). Assessment of the exposure to organochlorine pesticides, PCBs and PAHs in six species of predatory birds of the Canary Islands, Spain. Science of the Total Environment, 472, 146–153.  https://doi.org/10.1016/j.scitotenv.2013.11.021.CrossRefGoogle Scholar
  41. Macdonald, R., Eisenreich, S., Bidleman, T., Dachs, J., Pacyna, J., Jones, K., et al. (2001). Case studies on persistence and long range transport of persistent organic pollutants. In G. M. Klecka & D. Mackay (Eds.), Evaluation of persistence and long range transport of organic chemicals in the environment (pp. 245–314). Pensacola: SETAC Press.Google Scholar
  42. Mackay, D., Shiu, W. Y., & Ma, K. C. (1997). Illustrated handbook of physical-chemical properties of environmental fate of organic chemicals (Vol. V). Boca Raton: Lewis Publishers.Google Scholar
  43. Madroño, A., González, C., & Atienza, J. C. (2004). Libro rojo de las aves de España. Madrid: DGB (MIMAM) and SEO/BirdLife.Google Scholar
  44. Mañosa, S., Mateo, R., & Guitart, R. (2001). A review of the effects of agricultural and industrial contamination on the Ebro delta biota and wildlife. Environmental Monitoring and Assessment, 71, 187–205.CrossRefGoogle Scholar
  45. Mateo, R., Gil, C., Badía-Vila, M., Guitart, R., Hernández-Matías, A., Sanpera, C., et al. (2004). Use of fatty acids to explain variability of organochlorine concentrations in eggs and plasma of common terns (Sterna hirundo). Ecotoxicology, 13, 545–554.CrossRefGoogle Scholar
  46. Metcalf, R. L. (1955). Bencenehexachloride. In R. L. Metcalf (Ed.), Organic insecticides, their chemistry and mode of action (pp. 213–227). New York: Wiley-Interscience.Google Scholar
  47. Morales, L., Martrat, M. G., Olmos, J., Parera, J., Vicente, J., Bertolero, A., et al. (2012). Persistent Organic Pollutants in gull eggs of two species (Larus michahellis and Larus audouinii) from the Ebro delta Natural Park. Chemosphere, 88, 1306–1316.CrossRefGoogle Scholar
  48. Mullié, W. C., Massi, A., Focardi, S., & Renzoni, A. (1992). Residue levels of organochlorines and mercury in cattle egret, Bubulcus ibis, eggs from the Faiyum Oasis, Egypt. Bulletin of Environmental Contamination and Toxicology, 48, 739–746.CrossRefGoogle Scholar
  49. Newton, I. (1995). The contribution of some recent research on birds to ecological understanding. Journal of Animal Ecology, 64, 675–696.CrossRefGoogle Scholar
  50. Palomo, L. J., & Gisbert, J. (2002). Atlas de los Mamíferos terrestres de España. Madrid: DGCN-SECEM-SECEMU.Google Scholar
  51. Pathak, R., Suke, S. G., Ahmed, R. S., Tripathi, A. K., Guleria, K., Sharma, C. S., et al. (2008). Endosulfan and other organochlorine pesticide residues in maternal and cord blood in North Indian population. Bulletin of Environmental Contamination and Toxicology, 81, 216–219.CrossRefGoogle Scholar
  52. Peakall, D. B. (1970). Pesticides and the reproduction of birds. Scientific American, 222, 72–78.CrossRefGoogle Scholar
  53. Piqué, E., Mateo, R., Fernández-Fernández, D., & Guitart, R. (2006). Persistent organochlorine residues in livers of six species of Ciconiiformes (aves) from Spain. Journal of Environmental Science and Health, 41, 671–679.CrossRefGoogle Scholar
  54. Qiu, X. H., Zhu, T., Yao, B., Hu, J. X., & Hu, S. W. (2005). Contribution of dicofol to the current DDT pollution in China. Environmental Science and Technology, 39, 4385–4390.CrossRefGoogle Scholar
  55. RAIS (2015). The Risk Assessment Information System. https://rais.ornl.gov/cgi-bin/tools/TOX_search?select=chem_spef. Accesed 6 Oct 2015.
  56. Ratcliffe, D. A. (1970). Changes attributable to pesticides in egg breakage frequency and eggshell thickness in some british birds. Journal of Applied Ecology, 7, 67–115.CrossRefGoogle Scholar
  57. Rathore, H. S., & Nollet, L. M. L. (2012). Pesticides: Evaluation of environmental pollution. Boca Raton: CRC Press.CrossRefGoogle Scholar
  58. Rotterdam Convention (2004). http://www.pic.int/ Accessed 20 Feb 2016.
  59. Rudd, R. L., & Herman, S. G. (1972). Toxic effect of pesticide residues on wildlife. In F. Matsumura (Ed.), Environmental toxicology of pesticides (pp. 471–485). New York: Academic Press.CrossRefGoogle Scholar
  60. Sanpera, C., Ruiz, X., Jover, L., Llorente, G., Jabeen, R., Muhammad, A., et al. (2003). Persistent organic pollutants in little egret eggs from selected wetlands in Pakistan. Archives of Environmental Contamination and Toxicology, 44, 360–368.CrossRefGoogle Scholar
  61. Sastre, A., Martínez, S., Jurado, A., & Acaso, E. (2008). Geohidrología del humedal de El Hito (prov. de Cuenca), IX Simposio de Hidrogeología: Asociación Española de Hidrogeólogos (pp. 305–314).Google Scholar
  62. Shetty, P. K., Mitra, J., Murthy, N. B. K., Namitha, K. K., Sovitha, K. N., & Raghu, K. (2000). Biodegradation of cyclodiene insecticide endosulfan by Mucor thermohyalospora MTCC. Current Science, 79, 1381–1383.Google Scholar
  63. Shunthirasingham, C., Mmereki, B. T., Masamba, W., Oyiliagu, C. E., Lei, Y. D., & Wania, F. (2010). Fate of pesticides in the arid subtropics, Botswana, Southern Africa. Environmental Science and Technology, 44, 8082–8088.CrossRefGoogle Scholar
  64. Solomon, G. M., & Weiss, P. M. (2002). Chemical contaminants in breast milk: Time trends and regional variability. Environmental Health Perspectives, 110, 339–347.CrossRefGoogle Scholar
  65. Stockholm Convention. (2001). Stockholm Convention on Persistent Organic Pollutant (POPs). http://chm.pops.int/. Accessed 10 Dec 2015.
  66. Takeoka, H., Rarnesh, A., Iwata, H., Tanabe, S., Sobramanian, A. N., Mohan, D., et al. (1991). Fate of the insecticide HCH in the tropical coastal area of South India. Marine Pollution Bulletin, 22, 290–297.CrossRefGoogle Scholar
  67. van Leeuwen, C. J., & Hermens, J. L. M. (1995). Risk assessment of chemicals: an introduction. Dordrecht: Springer Science and Business Media.CrossRefGoogle Scholar
  68. Walker, C. H. (1983). Pesticides and birds: Mechanisms of selective toxicity. Agriculture, Ecosystems & Environment, 9, 211–226.CrossRefGoogle Scholar
  69. Wania, F. (2006). The potential of degradable organic chemicals for absolute and relative enrichment in the Arctic. Environmental Science and Technology, 40, 569–577.CrossRefGoogle Scholar
  70. Wania, F., & Mackay, D. (1995). A global distribution model for persistent organic chemicals. Science of the Total Environment, 160–161, 211–232.CrossRefGoogle Scholar
  71. Wania, F., & Mackay, D. (1999). The evolution of mass balance models of persistent organic pollutant fate in the environment. Environmental Pollution, 100, 223–240.CrossRefGoogle Scholar
  72. Wania, F., Mackay, D., & Li, Y. F. (1997). Persistent organic pollutants in the Arctic: identifying sources, quantifying pathways, and predicting trends. In: The AMAP International Symposium on Environmental Pollution in the Arctic, Tromsù, Extended Abstracts (pp. 24–27).Google Scholar
  73. World Health Organization. (1984). Environmental health criteria 40: endosulfan. Geneva: World Health Organization.Google Scholar
  74. Wu, W. Z., Xu, Y., Schramm, K. W., & Kettrup, A. (1997). Study of sorption, biodegradation and isomerization of HCH in stimulated sediment water system. Chemosphere, 35, 1887–1894.CrossRefGoogle Scholar
  75. Yang, Y., Toor, G. S., & Williams, C. F. (2015). Pharmaceuticals and organochlorine pesticides in sediments of an urban river in Florida, USA. Journal of Soils and Sediments, 15(4), 993–1004.  https://doi.org/10.1007/s11368-015-1077-7.CrossRefGoogle Scholar
  76. Yuan, L., Qi, S., Wu, X., Wu, C., Xing, X., & Gong, X. (2013). Spatial and temporal variations of organochlorine pesticides (OCPs) in water and sediments from Honghu Lake, China. Journal of Geochemical Exploration, 132, 181–187.CrossRefGoogle Scholar
  77. Zhang, Z. L., Huang, J., Yu, G., & Hong, H. (2004). Occurrence of PAHs, PCBs and organochlorine pesticides in Tonghui River of Beijing, China. Environmental Pollution, 130, 249–261.CrossRefGoogle Scholar
  78. Zhu, Y., Liu, H., Xi, Z., Cheng, H., & Xu, X. (2005). Organochlorine pesticides (DDTs and HCHs) in soils from the outskirts of Beijing, China. Chemosphere, 60, 770–778.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Biomolecular Stratigraphy LaboratoryE.T.S.I. Minas y Energía, Universidad Politécnica de MadridMadridSpain

Personalised recommendations