Advertisement

Journal of Iberian Geology

, Volume 44, Issue 1, pp 55–66 | Cite as

New longirostrine crocodylomorph remains from the Blesa Formation (Barremian) in the Iberian Peninsula (Spain)

Research paper

Abstract

Purpose

Crocodylomorpha has been a highly morphologically and ecologically diverse clade over time. During the Mesozoic and Cenozoic, several crocodylomorph lineages colonized the marine environment; however, by the late Early Cretaceous the extinction of Thalattosuchia and the origination of new marine forms occur, and the “Middle” Cretaceous is a period of time where marine crocodylomorphs are poorly known. Here we describe two rostrum fragments (MPZ 2016/78 and MPZ 2016/79) collected in the upper part of the Blesa Formation (Barremian, Lower Cretaceous) in Teruel (Spain). The “Upper” Blesa Fm has been interpreted as a coastal–transitional depositional environment.

Results

The specimens correspond to long-snouted crocodylomorphs. MPZ 2016/78 is the left half of a fragmentary rostrum with heterodonty in dentition size, M4? and M5? being the largest alveoli. This suggests that it belongs to a crocodylomorph with a generalist diet. By contrast, MPZ 2016/79 is a fragmentary right half of a more gracile and slender long rostrum. It is homodont in size, with several small teeth, common in animals specialized for ichthyophagy.

Conclusions

MPZ 2016/78 and MPZ 2016/79 have been assigned to Crocodylomorpha indet. This new crocodylomorph material, together with the fossil remains of marine vertebrates previously found in the same region (plesiosaurs, chelonians, osteichthyans, chondrichthyans and a new crocodylomorph), suggests that the “Upper” Blesa Formation was a coastal zone with a great wealth of fauna, making it an interesting area for the study of Barremian marine vertebrates.

Keywords

Marine crocodylomorph Early Cretaceous Blesa Formation Iberian Peninsula 

Resumen

Propósito

Crocodylomorpha ha sido un clado muy diverso a lo largo del tiempo, tanto morfológica como ecológicamente. Durante el Mesozoico y el Cenozoico, varios linajes de cocodrilomorfos colonizaron el ambiente marino. A fines del Cretácico Inferior se produce la extinción de Thalattosuchia (principal clado de cocodrilomorfos marinos del Mesozoico) y el origen de nuevas formas marinas, de manera que el Cretácico "Medio" es un período de tiempo en el que los cocodrilomorfos marinos son poco conocidos. Aquí se describen dos fragmentos craneales de cocodrilomorfos (MPZ 2016/78 y MPZ 2016/79) recogidos en la parte superior de la Formación Blesa (Barremiense, Cretácico Inferior) en Teruel (España), interpretada como un ambiente sedimentario costero-transicional.

Resultados

Los restos que se describen pertenecen a cocodrilomorfos de rostro alargado. MPZ 2016/78 corresponde con la mitad izquierda de un fragmento rostral, en el que se observa dentición heterodonta en tamaño, siendo M4? y M5? los alvéolos mayores. Esto sugiere que pertenece a un cocodrilomorfo con una dieta generalista. Por el contrario, MPZ 2016/79 es un fragmento de rostro, correspondiente a la mitad derecha de un rostro largo, más fino y grácil que el anterior. La dentición es homodonta en tamaño, con numerosos dientes pequeños, comunes en animales ictiófagos.

Conclusiones

MPZ 2016/78 y MPZ 2016/79 son restos craneales fragmentarios que han sido asignados a Crocodylomorpha indet. Este nuevo material de cocodrilomorfo, junto con los restos fósiles de vertebrados marinos hallados anteriormente en la misma región (plesiosaurios, quelonios, osteictios, condrictios y un nuevo cocodrilomorfo), sugiere que la Formación Blesa “Superior” era una zona costera con una gran riqueza de fauna, lo que lo convierte en un área interesante para el estudio de los vertebrados marinos de Barremiense.

Palabras clave

cocodrilomorfos marinos Cretácico Inferior Formación Blesa Península Ibérica 

1 Introduction

The evolutionary history of the crocodylomorphs includes several groups that have adapted to aquatic or semi-aquatic environments over time. However, not all of them have managed to live in the marine realm. During the Mesozoic, several independent marine radiations occurred, including Thalattosuchia, Dyrosauridae, and some taxa belonging to Pholidosauridae and Eusuchia (Mannion et al. 2015).

Marine crocodylomorph biodiversity increased until at least the Late Jurassic, with the radiation of Thalattosuchia, but there was an overall decline in biodiversity across the Jurassic/Cretaceous (J/K) boundary, with a loss of more than 75% of the genera, including theteleosaurid extinction in Europe (Mannion et al. 2015; Markwick 1998; Martin et al. 2014; Tennant et al. 2016; Young et al. 2014a). At least four metriorhynchoid genera (Young et al. 2014a) and one teleosaurid from Africa (Machimosaurus rex, Fanti et al. 2016) crossed the J–K boundary, but metriorhynchoids declined in biodiversity during the Early Cretaceous and were completely extinct by the Aptian (Chiarenza et al. 2015). After the J/K crash in diversity, the origination patterns of marine forms have very low rates in the Berriasian–Valanginian (Tennant et al. 2016), but a recovery in marine crocodylomorph biodiversity had started by the Late Cretaceous (Mannion et al. 2015; Markwick 1998; Martin et al. 2014). The oldest marine tethysuchian crocodyliform consists of a partial dentary from the Isle of Wight, most likely from the Upper Albian (Young et al. 2014b). Marine pholidosaurids are known in the Cenomanian–Turonian, and some dyrosaurids have been cited in the Cenomanian of Portugal (Buffetaut and Lauverjat 1978), the Santonian–Campanian of Egypt (Lamanna et al. 2004) and the Cenomanian of the Sudan (Buffetaut et al. 1990). However, Young et al. (2014b) conclude that there is insufficient evidence to be certain that any known Cenomanian specimen can be safely referred to Dyrosauridae (see also discussion in Young et al. 2016). The oldest marine gavialoid known, Eothoracosaurus, was found in the late Campanian of the Coon Creek Formation (Brochu 2004). Both Eusuchia and Dyrosauridae survived the K/Pg mass extinction (e.g. Barbosa et al. 2008; Brochu 2003; Brochu et al. 2002; Hastings et al. 2011; Hill et al. 2008; Mannion et al. 2015; Martin et al. 2014).

While Early Cretaceous marine deposits have yielded remains of marine reptiles (ichthyosaurs, plesiosaurs or mosasaurs) (Benson and Butler 2011), there is a general lack of marine crocodylomorphs in the Hauterivian–Barremian (Martin et al. 2014; Tennant et al. 2016), with the exception only of the Hauterivian Machimosaurus rex from Tunisia (Fanti et al. 2016).

The interval from Hauterivian to Campanian thus constitutes an interesting and poorly known period of time, where there is a replacement of the crocodylomorph fauna that inhabited the coastal and marine realm, with the extinction of Thalattosuchia and the first appearance of marine Pholidosauridae and posteriorly Dyrosauridae and Eusuchia, and with various temporal gaps in the marine crocodylomorph fossil record.

1.1 Marine crocodylomorphs from the Iberian Peninsula

The Iberian Peninsula is a highly interesting area of study for Mesozoic vertebrates, especially for crocodylomorphs from the Middle Jurassic to Late Cretaceous (e.g. Parrilla-Bel et al. 2013; Buscalioni et al. 2013; Puértolas-Pascual et al. 2013, 2015; Narváez et al. 2016). However, the record of marine crocodylomorphs mainly consists of poorly diagnostic remains, and few of them have been assigned to genus or species level. The presence of pholidosaurids has been cited in the Hauterivian–Barremian of Galve and the Wealden of Ortigosa de Cameros (Spain), as well as dyrosaurids in the Cenomanian of Nazaré (Portugal), but all of these citations need to be confirmed (Bardet et al. 2008). Thalattosuchians are better represented than pholidosaurids and dyrosaurids. There are some Middle Jurassic remains, including the holotype of Maledictosuchus riclaensis (Parrilla-Bel et al. 2013; Parrilla-Bel and Canudo 2015a), some indeterminate remains in Teruel and La Rioja (Spain), and Steneosaurus remains in Portugal (Buscalioni 1986; Bardet et al. 2008; Canudo 2011). However, most of the fossil record comes from Upper Jurassic outcrops: in Portugal (the Lisbon, Leiria, Faro and Coimbra regions) the presence of indeterminate Kimmeridgian and Tithonian teleosaurids, Machimosaurus and Steneosaurus (Bardet et al. 2008; Krebs 1967, 1968) has been cited; from the Kimmeridgian of Asturias (Spain) indeterminate thalattosuchian remains have been published (Ruiz-Omeñaca et al. 2004, 2007), as well as an indeterminate teleosaurid (Martínez et al. 1995), cf. Plesiosuchus (Young et al. 2012) and cf. Machimosaurus (Young et al. 2014c); a metriorhynchid from Griegos (Teruel, Spain) has been cited (Buscalioni 1986); Machimosaurus teeth (Young et al. 2014c) and a rostrum fragment from Teleosaurus (Boscá 1903) have been cited from Buñol (Valencia, Spain); and Machimosaurus remains have been cited in Extremadura (Spain) (Sauvage 1897–1898). The Early Cretaceous is a period that is singularly rich in vertebrate remains, mainly from continental and coastal environments (Kriwet et al. 2008; Buscalioni et al. 2008; Canudo et al. 2010). However, as occurs worldwide, Early Cretaceous marine crocodylomorphs are very scarce in the Iberian Peninsula. Bardet et al. (2008) cite three vertebrae and bone fragments from an indeterminate thalattosuchian from Alcalá de la Selva (Teruel, Spain), and a thalattosuchian specimen has been cited from the Berriasian of Jaen, Spain (Gea et al. 2001). Gasca et al. (2011) cite teeth belonging toaff. Machimosaurus from the Barremian of Allepuz (Teruel). These identifications about fragmentary material need to be reviewed.

In recent years, new marine vertebrate fossils have been recovered from the Blesa Formation (Barremian) in Teruel (Spain). These fossil remains correspond to isolated plesiosaurian vertebrae and teeth (Parrilla-Bel and Canudo 2015b), the braincase of a marine crocodylomorph (Parrilla-Bel et al. 2012, currently under review), and two rostrum fragments belonging to crocodylomorphs from Los Centenales and Fontanilla-2 sites respectively. The aim of this paper is the description of these two fossils.

1.2 Geographical and geological context

The sites of Los Centenales and Fontanilla-2 are situated in the villages of Obon and Josa (Teruel, Spain) respectively. These are located in the northeast of the Iberian Peninsula (Fig. 1).
Fig. 1

Geographical and geological location of the sites “La Fontanilla 2” and “Los Centenales” in the Blesa Formation. a Geological map of the Iberian Peninsula. b Location of the paleogeographicalsubbasins (Ol Oliete, Pa Las Parras, Ga Galve, Mo Morella, Pe Perelló, Sa Salzedella, Pg Peñagolosa) within the Maestrazgo Basin. c Location of the sites “La Fontanilla 2” and “Los Centenales”

(Modified from Canudo et al. 2010)

Geologically, both specimens were found in the Blesa Formation in the Olietesubbasin. The Iberian Basin of northeast Spain is an intracratonic basin that developed during the Mesozoic (Salas et al. 2001). An Early Cretaceous stage of rifting resulted in the formation of several subsident areas including the Olietesubbasin. The Olietesubbasin is located within the large Cretaceous Maestrazgo Basin (Soria et al. 1995; Salas et al. 2001). The Blesa Formation is divided into the “Lower” Blesa Formation and the “Upper” Blesa Formation. The lower part was deposited in a continental environment, and it is separated from the “Upper” Blesa by a distinct ferruginous transgression surface (Aurell et al. 2004). The “Upper” Blesa Formation was deposited in a coastal system. The sediments are mainly carbonate with more detrital levels towards the top of the formation. The vertebrate remains are from limestone levels in the lower part of the “Upper” Blesa Formation. The presence of oogonia attributed to Atopocharatrivolvis triquetra in the lower part of the Blesa Formation dates it to the early Barremian (Canudo et al. 2010; Riveline et al. 1996; see discussion in Canudo et al. 2012). At the moment, we consider the upper part of the Blesa Formation to be Barremian in age, waiting for this to be specified with greater precision.

The “Lower” Blesa Formation has provided a highly diverse assemblage of continental tetrapods: amphibians, squamates, chelonians, mammals, pterosaurs, crocodylomorphs and dinosaurs (Badiola et al. 2008; Canudo et al. 2010; Puértolas et al. 2015; Alonso and Canudo 2016). However, in the “Upper” Blesa Formation vertebrates are scarcer. There are isolated remains of osteichthyans, chondrichthyans, chelonian plates, teeth and cranial and postcranial elements of crocodylomorphs (Parrilla-Bel et al. 2012), cranial remains of pterosaur (Ulloa-Rivas and Canudo 2014), as well as teeth and vertebral centra belonging to plesiosaurs (Parrilla-Bel and Canudo 2015a).

1.3 Material

The material described in this paper consists of two rostrum fragments, MPZ 2016/78 from Fontanilla-2 and MPZ 2016/79 from Los Centenales. Both specimens are housed at the Museo de Ciencias Naturales de la Universidad de Zaragoza (MPZ).

2 Description

Specimen MPZ 2016/78 consists of a fragment of the left anterior part of a rostrum (Fig. 2). It is 7.5 cm long, with a maximal lateromedial width of 30 mm (from the midline to the lateral wall), and a height of 37 mm (H) (W/H = 1.62; W being the total width calculated for the rostrum). The greatest height and width values are in the posterior region. The ornamentation of the external bone surface (dorsolateral view) is composed of numerous irregularly distributed pits and small grooves that vary in size and shape. The maxilla and premaxilla are partially preserved. The dorsal premaxilla–maxilla suture runs anterolaterally, and the premaxillae meet one another along the midline. Posteriorly, the premaxillae contact the nasals, avoiding the maxillae contact along midline. The rostrum narrows anteriorly. It becomes wider at the level of the fourth and fifth alveoli. It bears six dental alveoli, which are roughly circular. The first one, which is incomplete, most probably corresponds to the first maxillary tooth (the premaxilla–maxilla suture is preserved in dorsal and lateral view, but not in ventral view). The second and third alveoli measure approximately 9–10 mm, and the fourth and fifth alveoli are enlarged, with a diameter of approximately 15 mm. The replacement tooth can be partially seen in the first and the sixth alveoli. The teeth are single-cusped. The last one (M6), which is better preserved, is ornamented with fine apicobasally aligned ridges (Fig. 3). The enamel covering the crown is ornamented with distinct striations, whereas the surface of the root is smooth, and there is no constriction between the root and crown. The interalveolar space between M1 and M2 is much reduced (< 1 mm); it is 1 mm between M2 and M3, and posteriorly the interalveolar space is constant at approximately 2 mm. Medial to the alveoli there are some deep neurovascular foramina. The nasal cavity is preserved. It becomes wider posteriorly (H > W anteriorly and W > H posteriorly), and has a dorsal notch along the midline (Fig. 2).
Fig. 2

MPZ 2016/78 in a dorsal view, b ventral view, c left lateral view, d medial view, e, f anterior view, g, h posterior view. Scale bar = 5 cm. Abbreviations: al alveolus, fo foramen, M maxillary tooth, mx maxilla, na? nasal?, nacav nasal cavity, prmx premaxilla, rt replacement tooth

Fig. 3

MPZ 2016/78. Maxillary tooth (M6?). a Posterolateral view showing the preserved root and crown. Scale bar = 2 mm. b Close-up on the apex. Scale bar = 1 mm

Specimen MPZ 2016/79 consists of part of the right maxilla of a longirostrine crocodylomorph (Fig. 4). It is approximately 120 mm long anteroposteriorly. The maximal width (from the midline to the lateral wall) is 20 mm in the posterior region, and the maximal height is 25 mm (W/H = 1.6). The external bone surface is ornamented with pits and small shallow grooves. It is difficult to recognize any suture, but probably a small part of the premaxilla is preserved (Fig. 4). Nine dental alveoli can be distinguished. The second one has preserved a small tooth, which is ornamented with fine apicobasal ridges (Fig. 5). The lateral margin of the maxilla is linear and the tooth row is not festooned in dorsal view. Reception pits are observed between the alveoli. The reception pits are in line with or close to the lingual border of the alveoli. There is a longitudinal rim separating the alveolar row from the palatal surface. There are some small nutrient foramina in the anterior region between the alveolar row and the midline suture. On the lateral maxillary surface there is a longitudinal groove. This groove begins at the tip of the preserved rostrum and runs along the two first alveoli. The groove finishes after the second alveolus and begins again by the third preserved alveolus, running posteriorly along the lateral maxillary surface, 6–8 mm dorsal to the dental margin of the alveoli.
Fig. 4

MPZ 2016/79 in a dorsal view, b ventral view, c right lateral view, d medial view. Scale bar = 5 cm. Abbreviations: al alveolus, fo foramen, gr maxillary groove, mx maxilla, nacav nasal cavity, prmx? premaxilla?, rp reception pit, rt replacement tooth

Fig. 5

MPZ 2016/79. Scale bar = 1 mm

3 Discussion

Specimens MPZ 2016/78 and 79 are fragmentary and poorly diagnostic, but the ornamentation of the external surface of the rostra, the thecodont tooth implantation (each tooth being situated apart from its neighbours in an individual alveolus) and the tooth replacement (a replacement tooth below the functional tooth) allow us to rule out plesiosaur or ichthyosaur affinities (Rieppel 2001; Sassoon et al. 2015) and to assign the rostra to Crocodylomorpha. The two rostrum fragments (MPZ 2016/78 and 79) correspond to long-snouted crocodylomorphs, but the morphology and size of the two specimens are different and they belong to two different taxa.

Long-snouted species are found in all clades of marine crocodylomorphs (Thalattosuchia, Dyrosauridae, Pholidosauridae, Gavialoidea and Tomistominae), but also in other, non-marine taxa, such as freshwater pholidosaurids or gavialoids such as the extant Gavialis gangeticus. In addition, several species of Crocodylus have long and slender rostra, though not as narrow or elongated as those of Gavialis or Tomistoma so they are not commonly included in the longirostrine condition (Pol and Gasparini 2009). Similar crocodilian skull morphologies have been considered to be an example of convergent evolution, arising as a response to similar ecological/functional constraints linked to the diet (e.g. Piras et al. 2014).

As noted above, the Barremian was a period of the Early Cretaceous in which there was an absence of marine crocodylomorphs (Tennant et al. 2016). The most common crocodylomorphs that inhabited Europe in this age were bernissartids, atoposaurids, goniopholidids and hylaeochampsids, the same associations that have also been found in the Iberian Peninsula (Schwarz-Wings et al. 2009; Buscalioni et al. 2008; Puértolas-Pascual et al. 2015). Atoposaurids are small crocodyliforms with a broad head and a short, pointed snout. Hylaeochampsids are small eusuchians with short and broad skulls, as found in bernissartids, small-sized crocodiles with a brevirostrine skull (Romer 1956; Sweetman et al. 2015). Some goniopholidids such as Vectisuchus (usually considered a goniopholidid but with an unclear phylogenetic position) have a long slender snout (Buffetaut and Hutt 1980), but the snout of Goniopholididae is usually broad and hardly elongated (a platyrostral snout) (e.g. Pritchard et al. 2013). All these taxa are continental crocodylomorphs and lack the longirostrine condition (with the exception of Vectisuchus). None of them shares morphological similarities with MPZ 2016/78 or 79. In addition, the fossil remains MPZ 2016/78 and 79, found in marine facies, although are broken they lack evidences of having suffered long transportation. In this context we assume that they correspond with marine forms.

The rostrum fragment MPZ 2016/78 is somewhat wider than MPZ 2016/79, and shows variations in alveolar size, with larger M4 and M5 alveoli. However, the distance between the midline and the tooth row is narrow and constant (from 12 mm in the first alveoli to approximately 14 mm in the last one preserved), which supports the hypothesis that MPZ 2016/78 is a fragment of a long rostrum (Fig. 2). Given the preservation of the specimen, however, we cannot exclude it being mesorostrine or sublongirostrine. The heterodonty (using this term to denote the size variation along the tooth row, with large M4 and M5 alveoli in MPZ 2016/78) is unusual among narrow-snouted forms, but present in other elongate but not slender-snouted crocodyliforms such as Phosphatosaurus, Sokotosuchus or Elosuchus (deLapparent de Broin 2002), in goniopholidids, e.g. Goniopholis baryglyphaeus (Schwarz 2002) or Goniopholis kiplingi, with the fourth and fifth maxillary alveoli enlarged (Andrade et al. 2011), or in Crocodylia, with the fifth maxillary alveolus being the largest. The nasals seem to contact the premaxillae, penetrating a short distance between them. This character is shared with primitive gavialoids such as Thoracosaurus macrorhynchus, Argochampsa krebsi or Eogavialis africanum (Hua and Jouve 2004), and it also occurs in Tethysuchia (e.g. Dyrosaurus phosphaticus, Jouve 2005). Tomistominae has nasal-premaxilla contact, but the nasals penetrate a long way between the premaxillae. Nasal-premaxilla contact is absent (i.e. the maxillae meet medially, separating the nasals from the premaxillae) in other longirostrine forms such as derived gavialoids (Hua and Jouve 2004) and almost all thalattosuchians (e.g. Pierce et al. 2009; Pol and Gasparini 2009) (Fig. 6). The alveoli are close together in MPZ 2016/78, and the interalveolar space is less than the alveolar diameter. The interalveolar space in Thalattosuchia is generally reduced in Geosaurini, and variable in teleosaurids and metriorhynchines (Foffa and Young 2014). It is also variable in goniopholidids, very close in Goniopholis baryglyphaeus (Schwarz 2002), and wider in Hulkepholis plotos (Buscalioni et al. 2013). The interalveolar space is usually equal to or greater than the alveolar diameter in Dyrosauridae and Pholidosauridae (e.g. Jouve 2005; Martin et al. 2016). In eusuchians, however, the teeth are widely spaced, so that even in long-snouted forms (Gavialoidea, Tomistominae and Euthecodon, sensu Brochu 2001) the tooth count is usually lower, but the teeth are more spaced out (Romer 1956).
Fig. 6

Comparative plate of long-snouted crocodylomorphs in dorsal and ventral view. a Dollosuchoides densmorei, redrawn from Brochu (2007); b Kentisuchus spenceri (only dorsal view), redrawn from Brochu (2007); c Argochampsa krebsi, redrawn from Hua and Jouve (2004); d Eos thoracosaurus mississippiensis, redrawn from Brochu (2004); e Dyrosaurus phosphaticus, redrawn from Jouve (2005); f Terminonaris robusta, redrawn from Wu et al. (2001); g Pholidosaurus purbeckensis, redrawn from Martin et al. (2016); h Elosuchuscherifiensis, redrawn from de Lapparent de Broin (2002); i Tyrannoneustes lythrodectikos, redrawn from Foffa and Young (2014); j Maledictosuchus riclaensis, redrawn from Parrilla-Bel et al. (2013); k Steneosaurus edwardsi, redrawn from Vignaud (1995) (not scaled); l MPZ 2016/78; m MPZ 2016/79. Blue: premaxillae; green: maxillae; red: nasals. Scale bar = 10 cm

Specimen MPZ 2016/79 is a fragment of a long rostrum with a constant width and height, most probably of a slender-snouted longirostrine form. The variation in the alveolar size is small, it being considered homodont. Also the interalveolar space is constant. Thalattosuchians, gavialoids and dyrosaurids have a “regular” rostrum (constant width and height along the maxilla), homodonty in dentition size and a constant interalveolar space. Gavialoids have a festooned alveolar border because of the alignment of the maxillary and dentary tooth rows (e.g. Argochampsa, Hua and Jouve 2004). Dyrosaurids have occlusal sulci between the alveoli, but not deep enough dorsally to be seen from above; the lateral margin of the maxillais linear and the tooth row is not festooned in dorsal view (Jouve 2005). MPZ 2016/79 has a linear lateral margin of the maxilla, and lacks occlusal sulci. Instead, it has reception pits on the maxilla, medial to the maxillary alveoli (the dentary teeth occlude lingually to their maxillary counterparts, resulting in an alligator-like overbite; Brochu 2003). Occlusal pits are described in other long-snouted crocodylomorphs, such as Maledictosuchus riclaensis (Parrilla-Bel et al. 2013) or Machimosaurus hugii, which bears reception pits between the posterior maxillary alveoli, close to the level of the lingual alveolar margin (Martin and Vincent 2013). MPZ 2016/79 has a longitudinal groove along the lateral side of the maxilla dorsal to the dental margin of the alveoli. Ventral to this groove the ornamentation is reduced. A similar maxillary groove has been described in Terminonaris robusta and Terminonaris browni (Wu et al. 2001), but in these species the groove is continuous along the maxilla. Goniopholidids and other pholidosaurids bear a maxillary depression, but this is located in the posterior region, in contact with the jugal (Martin and Buffetaut 2012; Martin et al. 2016).

The presence of at least two marine crocodylomorph taxa in the Upper Blesa Formation has ecological implications. The Blesa Formation (Barremian, Lower Cretaceous) has been described as a coastal–transitional environment, where marine vertebrate fossils as plesiosaurs have been found (Parrilla-Bel and Canudo 2015b). The presence of plesiosaurs and various crocodylomorphs implies the coexistence of several active, medium-sized predators in this environment. This could only have been maintained by the existence of great amounts of lower organisms to feed on, with niche partitioning or temporal or spatial differentiation. A detailed geological and paleontological study of this formation, currently being undertaken, will provide interesting data on this rich ecosystem and increase our knowledge of marine reptiles, which are globally scarce in the Barremian.

4 Conclusions

We describe two marine crocodylomorph remains from the Barremian of Spain. Both specimens, MPZ 2016/78 and MPZ 2016/79, are fragmentary and lack clear diagnostic characters, so we assign them to Crocodylomorpha indet. Both specimens (MPZ 2016/78 and MPZ 2016/79) are longirostrine forms, but they show different morphologies. MPZ 2016/79 is long-snouted and with several small teeth, common in animals specialized for ichthyophagy. By contrast, MPZ 2016/78 corresponds to a more robust, long-snouted taxon. The alveoli are larger than in MPZ 2016/79 and the tooth row is heterodont in size, which could correspond to a crocodylomorph with a more generalist diet. Accordingly, we can recognize two crocodylomorphs with different lifestyles in the “Upper” Blesa Formation. The new crocodylomorph material, together with the fossil remains of marine vertebrates (such as small-medium-sized plesiosaurs, chelonians, osteichthyans, and a new crocodylomorph) previously found in the same region, suggest that the “Upper” Blesa Formation was a coastal zone with a great wealth of fauna. A deeper study of this Barremian vertebrate association in the Blesa Formation, with the presence of taxa poorly known worldwide during the Lower Cretaceous will provide interesting data of the coastal biota of the Barremian of the Iberian Peninsula.

Notes

Acknowledgements

This paper forms part of project CGL2014-53548 and is subsidized by the Spanish Ministry of Economy and Competitiveness, the European Regional Development Fund and the Government of Aragón (‘Grupos Consolidados’ and ‘Dirección General de Patrimonio Cultural’). We thank Javier Andreu and Fernando Gracia, who provided the material described. We also thank S. Jouve, the anonymous reviewers and the editors for their comments, which helped to improve the article, and Rupert Glasgow, who revised the English grammar.

References

  1. Alonso, A., & Canudo, J. I. (2016). On the spinosaurid theropod teeth from the early Barremian (Early Cretaceous) Blesa Formation (Spain). Historical Biology, 28(6), 823–834.CrossRefGoogle Scholar
  2. Andrade, M. B., Edmonds, R., Benton, M. J., & Schouten, R. (2011). A new Berriasian species of Goniopholis (Mesoeucrocodylia, Neosuchia) from England, and a review of the genus. Zoological Journal of the Linnean Society, 163(s1), s66–s108.CrossRefGoogle Scholar
  3. Aurell, M., Bádenas, B., Canudo, J. I., & Ruiz-Omeñaca, J. I. (2004). Evolución tectosedimentaria de la Fm. Blesa (Cretácico Inferior) en el entorno del yacimiento de vertebrados de La Cantalera (Josa, Teruel). Geogaceta, 35, 11–13.Google Scholar
  4. Badiola, A., Canudo, J. I., & Cuenca-Bescós, G. (2008). New multituberculate mammals of the Hauterivian/Barremian transition of Europe (Iberian Peninsula). Palaeontology, 51(6), 1455–1469.CrossRefGoogle Scholar
  5. Barbosa, J. A., Kellner, A. W. A., & Viana, M. S. S. (2008). New dyrosaurid crocodylomorph and evidences for faunal turnover at the K–P transition in Brazil. Proceedings of the Royal Society of London B: Biological Sciences, 275(1641), 1385–1391.CrossRefGoogle Scholar
  6. Bardet, N., Pereda Suberbiola, X., & Ruiz-Omeñaca, J. I. (2008). Mesozoic marine reptiles from the Iberian Peninsula. Geo-Temas, 10, 1245–1248.Google Scholar
  7. Benson, R. B., & Butler, R. J. (2011). Uncovering the diversification history of marine tetrapods: ecology influences the effect of geological sampling biases. Geological Society, London, Special Publications, 358(1), 191–208.CrossRefGoogle Scholar
  8. Boscá, E. (1903). Hallazgo de un Teleosáurido en Buñol (Valencia). Boletín de la Sociedad Española de Historia Natural, 3, 140–145.Google Scholar
  9. Brochu, C. A. (2001). Crocodylian snouts in space and time: phylogenetic approaches toward adaptive radiation. American Zoologist, 41(3), 564–585.Google Scholar
  10. Brochu, C. A. (2003). Phylogenetic approaches toward crocodylian history. Annual Review of Earth and Planetary Sciences, 31(1), 357–397.CrossRefGoogle Scholar
  11. Brochu, C. A. (2004). A new Late Cretaceous gavialoid crocodylian from eastern North America and the phylogenetic relationships of thoracosaurs. Journal of Vertebrate Paleontology, 24(3), 610–633.CrossRefGoogle Scholar
  12. Brochu, C. A. (2007). Systematics and taxonomy of Eocene tomistomine crocodylians from Britain and Northern Europe. Palaeontology, 50(4), 917–928.CrossRefGoogle Scholar
  13. Brochu, C. A., Bouare, M. L., Sissoko, F., Roberts, E. M., & O’Leary, M. A. (2002). A dyrosauridcrocodyliform braincase from Mali. Journal of Paleontology, 76(6), 1060–1071.CrossRefGoogle Scholar
  14. Buffetaut, E., & Hutt, S. (1980). Vectisuchus leptognathus, ng. nsp., a slender-snouted goniopholidid crocodilian from the Wealden of the Isle of Wight. Neues Jahrbuch für Geologie und Paläontologie, Monatshefte, 7, 385–390.Google Scholar
  15. Buffetaut, E., Bussert, R., & Brinkmann, W. (1990). A new nonmarine vertebrate fauna in the Upper Cretaceous of northern Sudan. Berliner Geowissenschaftlische Abhandlungen, 120, 183–202.Google Scholar
  16. Buffetaut, E., & Lauverjat, J. (1978). Un crocodilien d’un type particulier dans le Cénomanien de Nazaré (Portugal). Comptes Rendussommaires des Séances de la Société Géologique de France, 20, 78–82.Google Scholar
  17. Buscalioni, A. D. (1986). Los cocodrilos fósiles del registro español. Paleontologia i Evolució, 20, 93–52298.Google Scholar
  18. Buscalioni, Á. D., Alcalá, L., Espílez, E., & Mampel, L. (2013). European Goniopholididae from the Early Albian Escucha Formation in Ariño (Teruel, Aragón, Spain). Spanish Journal of Palaeontology, 28(1), 103–122.Google Scholar
  19. Buscalioni, A. D., Fregenal, M. A., Bravo, A., Poyato-Ariza, F. J., Sanchíz, B., Báez, A. M., et al. (2008). The vertebrate assemblage of Buenache de la Sierra (Upper Barremian of Serrania de Cuenca, Spain) with insights into its taphonomy and palaeoecology. Cretaceous Research, 29(4), 687–710.CrossRefGoogle Scholar
  20. Canudo, J. I. (2011). El centro de interpretación de paleontología del parque cultural del Río Martín en Alacón. Naturaleza Aragonesa, 26, 78–82.Google Scholar
  21. Canudo, J. I., Gasca, J. M., Aurell, M., Badiola, A., Blain, H. A., Cruzado-Caballero, P., et al. (2010). La Cantalera: an exceptional window onto the vertebrate biodiversity of the Hauterivian–Barremian transition in the Iberian Peninsula. Journal of Iberian Geology, 36(2), 29–324.CrossRefGoogle Scholar
  22. Canudo, J. I., Gasca, J. M., Moreno, M., & Aurell, M. (2012). New information about the stratigraphic position and age of the sauropod Aragosaurus ischiaticus from the Early Cretaceous of the Iberian Peninsula. Geological Magazine, 149(2), 252–263.CrossRefGoogle Scholar
  23. Chiarenza, A. A., Foffa, D., Young, M. T., Insacco, G., Cau, A., Carnevale, G., et al. (2015). The youngest record of metriorhynchid crocodylomorphs, with implications for the extinction of Thalattosuchia. Cretaceous Research, 56, 608–616.CrossRefGoogle Scholar
  24. deLapparent de Broin, F. (2002). Elosuchus, a new genus of crocodile from the Lower Cretaceous of the North of Africa. Comptes Rendus Palevol, 1, 275–285.CrossRefGoogle Scholar
  25. Fanti, F., Miyashita, T., Cantelli, L., Mnasri, F., Dridi, J., Contessi, M., et al. (2016). The largest thalattosuchian (Crocodylomorpha) supports teleosaurid survival across the Jurassic–Cretaceous boundary. Cretaceous Research, 61, 263–274.CrossRefGoogle Scholar
  26. Foffa, D., & Young, M. T. (2014). The cranial osteology of Tyrannoneustes lythrodectikos (Crocodylomorpha: Metriorhynchidae) from the Middle Jurassic of Europe. PeerJ, 2, e608.CrossRefGoogle Scholar
  27. Gasca, J. M., Moreno-Azanza, M., & Canudo, J. I. (2011). Dientes de dinosaurios en el Barremiense de Allepuz, Teruel. In A. Pérez-García, F. Gascó, J. M. Gasulla, & F. Escaso (Eds.), Viajando a mundos pretéritos (pp. 145–155). Morella: Ayuntamiento de Morella.Google Scholar
  28. Gea, G. A., Buscalioni, A. D., Aguado, R., & Ruiz-Ortiz, P. A. (2001). Restos fósiles de un cocodrilo marino en el Berriasiense inferior de la Unidad Intermedia del Cárceles-Carluco. Cordilleras Béticas. Sur de Bedmar (Jaén). Geotemas, 3(2), 201–203.Google Scholar
  29. Hastings, A. K., Bloch, J. I., & Jaramillo, C. A. (2011). A new longirostrine dyrosaurid (Crocodylomorpha, Mesoeucrocodylia) from the Paleocene of north-eastern Colombia: biogeographic and behavioural implications for New-World Dyrosauridae. Palaeontology, 54(5), 1095–1116.CrossRefGoogle Scholar
  30. Hill, R. V., Mccartney, J. A., Roberts, E., Bouaré, M., Sissoko, F., & O’leary, M. A. (2008). Dyrosaurid (Crocodyliformes: Mesoeucrocodylia) fossils from the Upper Cretaceous and Paleogene of Mali: implications for phylogeny and survivorship across the K/T boundary. American Museum Novitates, 3631, 1–19.CrossRefGoogle Scholar
  31. Hua, S., & Jouve, S. (2004). A primitive marine gavialoid from the Paleocene of Morocco. Journal of Vertebrate Paleontology, 24(2), 341–350.CrossRefGoogle Scholar
  32. Jouve, S. (2005). A new description of the skull of Dyrosaurus phosphaticus (Thomas, 1893) (Mesoeucrocodylia: Dyrosauridae) from the Lower Eocene of North Africa. Canadian Journal of Earth Sciences, 42(3), 323–337.CrossRefGoogle Scholar
  33. Krebs, B. (1967). Der Jura-Krokodilier Machimosaurus H. v. Meyer. Paläontologische Zeitschrift, 41, 46–59.CrossRefGoogle Scholar
  34. Krebs, B. (1968). Le crocodilien Machimosaurus. Serviços Geológicos de Portugal, Memória, 14, 1–53.Google Scholar
  35. Kriwet, J., Klug, S., Canudo, J. I., & Cuenca-Bescós, G. (2008). A new Early Cretaceous lamniform shark (Chondrichthyes, Neoselachii). Zoological Journal of Linnean Society, 154(2), 278–290.CrossRefGoogle Scholar
  36. Lamanna, M. C., Smith, J. B., Attia, Y. S., & Dodson, P. (2004). From dinosaurs to dyrosaurids (Crocodyliformes): removal of the post-Cenomanian (Late Cretaceous) record of Ornithischia from Africa. Journal of Vertebrate Paleontology, 24(3), 764–768.CrossRefGoogle Scholar
  37. Mannion, P. D., Benson, R. B., Carrano, M. T., Tennant, J. P., Judd, J., & Butler, R. J. (2015). Climate constrains the evolutionary history and biodiversity of crocodylians. Nature Communications, 6, 8438.CrossRefGoogle Scholar
  38. Markwick, P. J. (1998). Fossil crocodilians as indicators of Late Cretaceous and Cenozoic climates: implications for using palaeontological data in reconstructing palaeo climate. Palaeogeography, Palaeoclimatology, Palaeoecology, 137(3–4), 205–271.CrossRefGoogle Scholar
  39. Martin, J. E., Amiot, R., Lécuyer, C., & Benton, M. J. (2014). Sea surface temperature contributes to marine crocodylomorph evolution. Nature communications, 5, 4658.Google Scholar
  40. Martin, J. E., & Buffetaut, E. (2012). The maxillary depression of Pholidosauridae: an anatomical study. Journal of Vertebrate Paleontology, 32(6), 1442–1446.CrossRefGoogle Scholar
  41. Martin, J. E., Raslan-Loubatié, J., & Mazin, J. M. (2016). Cranial anatomy of Pholidosaurus purbeckensis from the Lower Cretaceous of France and its bearing on pholidosaurid affinities. Cretaceous Research, 66, 43–59.CrossRefGoogle Scholar
  42. Martin, J. E., & Vincent, P. (2013). New remains of Machimosaurushugii von Meyer, 1837 (Crocodilia, Thalattosuchia) from the Kimmeridgian of Germany. Fossil Record, 16(2), 179–196.CrossRefGoogle Scholar
  43. Martínez, R. D., García-Ramos, J. C., & Ibáñez Sarmiento, I. (1995). El primer Crocodylia (Mesosuchia: Teleosauridae) del Jurásico Superior de Asturias, España. Naturalia patagónica. Ciencias de la Tierra, 3, 93–95.Google Scholar
  44. Narváez, I., Brochu, C. A., Escaso, F., Pérez-García, A., & Ortega, F. (2016). New Spanish Late Cretaceous eusuchian reveals the synchronic and sympatric presence of two allodaposuchids. Cretaceous Research, 65, 115–125.CrossRefGoogle Scholar
  45. Parrilla-Bel, J., & Canudo, J. I. (2015a). Postcranial elements of Maledictosuchus riclaensis (Thalattosuchia) from the Middle Jurassic of Spain. Journal of Iberian Geology, 41(1), 31–40.CrossRefGoogle Scholar
  46. Parrilla-Bel, J., & Canudo, J. I. (2015b). On the presence of plesiosaurs in the Blesa Formation (Barremian) in Teruel (Spain). NeuesJahrbuch für Geologie und Paläontologie-Abhandlungen, 278(2), 213–227.CrossRefGoogle Scholar
  47. Parrilla-Bel, J., Young, M. T., Moreno-Azanza, M., & Canudo, J. I. (2013). The first metriorhynchid crocodylomorph from the Middle Jurassic of Spain, with implications for evolution of the subclade Rhacheosaurini. PLoS One, 8(1), e54275.CrossRefGoogle Scholar
  48. Parrilla-Bel, J., Young, M., Puértolas, E., Canudo, J. I., Cruzado-Caballero, P., Gasca, J. M., & Moreno-Azanza, M. (2012). Descripción de un resto craneal de reptil marino de la Formación Blesa (Barremiense inferior) de la localidad de Josa (Teruel). In: Liao, J-C., Gámez Vintaned, J. A., Valenzuela-Ríos, J.I., García-Forner, A. (Eds) XXVIII Jornadas de la Sociedad Española de Paleontología. Homenaje a Guillem Colom Casasnovas (1900–1993), 241–243; Universitat de València.Google Scholar
  49. Pierce, S. E., Angielczyk, K. D., & Rayfield, E. J. (2009). Morphospace occupation in thalattosuchian crocodylomorphs: skull shape variation, species delineation and temporal patterns. Palaeontology, 52, 1057–1097.CrossRefGoogle Scholar
  50. Piras, P., Buscalioni, A. D., Teresi, L., Raia, P., Sansalone, G., Kotsakis, T., et al. (2014). Morphological integration and functional modularity in the crocodilian skull. Integrative zoology, 9(4), 498–516.CrossRefGoogle Scholar
  51. Pol, D., & Gasparini, Z. (2009). Skull anatomy of Dakosaurus andiniensis (Thalattosuchia: Crocodylomorpha) and the phylogenetic position of Thalattosuchia. Journal of Systematic Palaeontology, 7(2), 163–197.CrossRefGoogle Scholar
  52. Pritchard, A. C., Turner, A. H., Allen, E. R., & Norell, M. A. (2013). Osteology of a North American goniopholidid (Eutretauranosuchus delfsi) and palate evolution in Neosuchia. American Museum Novitates, 3783, 1–56.CrossRefGoogle Scholar
  53. Puértolas-Pascual, E., Canudo, J. I., & Moreno-Azanza, M. (2013). The eusuchian crocodylomorph Allodaposuchus subjuniperus sp. nov., a new species from the latest Cretaceous (upper Maastrichtian) of Spain. Historical Biology: An International Journal of Paleobiology, 26(1), 91–104.CrossRefGoogle Scholar
  54. Puértolas-Pascual, E., Rabal-Garcés, R., & Canudo, J. I. (2015). Exceptional crocodylomorph biodiversity of “La Cantalera” site (lower Barremian; Lower Cretaceous) in Teruel, Spain. Palaeontologia Electronica, 18(2), 1–16.Google Scholar
  55. Rieppel, O. (2001). Tooth implantation and replacement in Sauropterygia. Paläontologische Zeitschrift, 75, 207–217.CrossRefGoogle Scholar
  56. Riveline, J., Berger, J. P., Feist, M., Martín-Closas, C., Schudack, M., & Soulié-Märsche, I. (1996). European Mesozoic–Cenozoic charophyte biozonation. Bulletin de la Société géologique de France, 167(3), 453–468.Google Scholar
  57. Romer, A. S. (1956). Osteology of the Reptiles. Chicago: University of Chicago press.Google Scholar
  58. Ruiz-Omeñaca, J. I., Canudo, J. I., Aurell, M., Bádenas, B., Cuenca-Bescós, G., & Ipas, J. (2004). Estado de las investigaciones sobre los vertebrados del Jurásico superior y el Cretácico inferior de Galve (Teruel). Estudios Geológicos, 60, 179–202.CrossRefGoogle Scholar
  59. Ruiz-Omeñaca, J. I., Piñuela, L., García-Ramos, J. C., Bardet, N., & Pereda-Suberbiola, X. (2007). Dientes de reptiles marinos (Plesiosauroidea y Thalattosuchia) del Jurásico Superior de Asturias. In J. C. Braga, A. Checa, & M. Company (Eds.) XXIII Jornadas de la Sociedad Española de Paleontología. Caravaca de la Cruz, 3–6 de octubre de 2007. Granada: Libro de resúmenes. IGME y Universidad de Granada. pp. 204–205.Google Scholar
  60. Salas, R., Guimerà, J., Mas, R., Martín-Closas, C., Meléndez, A., & Alonso, A. (2001). Evolution of the Mesozoic central Iberian Rift System and its Cainozoic inversion (Iberian chain). Peri-Tethys Memoir, 6, 145–185.Google Scholar
  61. Sassoon, J., Foffa, D., & Marek, R. (2015). Dental ontogeny and replacement in Pliosauridae. Royal Society open science, 2, 150384.CrossRefGoogle Scholar
  62. Sauvage, H.E. (1897–98). Vertebresfossiles du Portugal.Contributiònal’étude des poissons et des reptiles du Jurassique et du Crétacique. Lisbonne: Direction des Travauxgéologiques du Portugal, p 46.Google Scholar
  63. Schwarz, D. (2002). A new species of Goniopholis from the Upper Jurassic of Portugal. Palaeontology, 45(1), 185–208.CrossRefGoogle Scholar
  64. Schwarz-Wings, D., Rees, J., & Lindgren, J. (2009). Lower Cretaceous mesoeucrocodylians from Scandinavia (Denmark and Sweden). Cretaceous Research, 30(5), 1345–1355.CrossRefGoogle Scholar
  65. Soria, A. R., Martín-Closas, C., Meléndez, A., Meléndez, N., & Aurell, M. (1995). Estratigrafía del Cretácico inferior del sector central de la Cordillera Ibérica. Estudios Geológicos, 51, 141–152.CrossRefGoogle Scholar
  66. Sweetman, S. C., Pedreira-Segade, U., & Vidovic, S. U. (2015). A new bernissartiid crocodyliform from the Lower Cretaceous Wessex Formation (Wealden Group, Barremian) of the Isle of Wight, southern England. Acta Palaeontologica Polonica, 60(2), 257–268.Google Scholar
  67. Tennant J. P., Mannion P. D., & Upchurch P. (2016).Environmental drivers of crocodyliform extinction across the Jurassic/Cretaceous transition. Proceedings of the Royal Society B, 283, 20152840.Google Scholar
  68. Ulloa-Rivas, J. A., & Canudo, J. I. (2014). New cranial remains of Ornithocheiroidea (Pterosauria) from the Barremian (Lower Cretaceous) of the Iberian Peninsula.Arreguín-Rodriguez, G., Colmenar, J., Díaz-Berenguer, E., Galán, J., Legarda-Lisarri, A., Parrilla-Bel, J., Puértolas-Pascual, E, Silva-Casal, R. (Eds.): New insightsonancientlife. Actas del XII EJIP, 116–119.Google Scholar
  69. Vignaud. P. (1995). Les Thalattosuchia, crocodiles marins du Mesozoique: systématique phylogénétique, paléoecologie, biochronologie et implications paléogéographiques. Tesis Doctoral, Université de Poitiers, 271 pp. (unpublished).Google Scholar
  70. Wu, X. C., Russell, A. P., & Cumbaa, S. L. (2001). Terminonaris (Archosauria: Crocodyliformes): new material from Saskatchewan, Canada, and comments on its phylogenetic relationships. Journal of Vertebrate Paleontology, 21(3), 492–514.CrossRefGoogle Scholar
  71. Young, M. T., Brandalise de Andrade, M., Cornées, J. J., & Seteel, L. (2014a). Re-description of a putative Early Cretaceous “teleosaurid” from France, with implications for the survival of metriorhynchids and teleosaurids across the Jurassic-Cretaceous Boundary. Annales de Paléontologie, 200(2), 165–174.CrossRefGoogle Scholar
  72. Young, M. T., Brusatte, S. L., De Andrade, M. B., Desojo, J. B., Beatty, B. L., Steel, L., et al. (2012). The cranial osteology and feeding ecology of the metriorhynchid crocodylomorph genera Dakosaurus and Plesiosuchus from the Late Jurassic of Europe. PLoS ONE, 7(9), e44985.CrossRefGoogle Scholar
  73. Young, M. T., Hastings, A. K., Allain, R., & Smith, T. J. (2016). Revision of the enigmatic crocodyliform Elosuchus felixi de Lapparent de Broin, 2002 from the Lower-Upper Cretaceous boundary of Niger: potential evidence for an early origin of the clade Dyrosauridae. Zoological Journal of the Linnean Society, 179(2), 377–403.Google Scholar
  74. Young, M. T., Hua, S., Steel, L., Foffa, D., Brusatte, S. L., Thüring, S., et al. (2014b). Revision of the Late Jurassic teleosaurid genus Machimosaurus (Crocodylomorpha, Thalattosuchia). Royal Society Open Science, 1(2), 140222.CrossRefGoogle Scholar
  75. Young, M., Steel, L., Foffa, D., Price, T., Naish, N., & Tennant, J. P. (2014c). Marine tethysuchiancrocodyliform from the ?Aptian-Albian (Lower Cretaceous) of the Isle of Wight, UK. Biological Journal of the Linnean Society, 113, 854–871.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Grupo Aragosaurus-IUCA, Paleontología, Facultad de CienciasUniversidad de ZaragozaZaragozaSpain
  2. 2.Museo de Ciencias Naturales de la Universidad de ZaragozaZaragozaSpain

Personalised recommendations