Advertisement

Journal of Iberian Geology

, Volume 43, Issue 4, pp 583–600 | Cite as

Paleomagnetism in Extremadura (Central Iberian zone, Spain) Paleozoic rocks: extensive remagnetizations and further constraints on the extent of the Cantabrian orocline

  • Daniel Pastor-Galán
  • Gabriel Gutiérrez-Alonso
  • Mark J. Dekkers
  • Cor G. Langereis
Research paper

Abstract

Introduction

The winding Variscan belt in Iberia, featuring the Cantabrian orocline (NW Iberia) and the Central Iberian curve, is a foremost expression of the late Carboniferous amalgamation of Pangea, which produced remagnetizations spanning almost the entire globe.

Geological settings

Also in Iberia, late Carboniferous remagnetizations are widespread often hindering paleomagnetic interpretations in terms of pre-Pangean geologic history. In contrast, such remagnetizations facilitated the kinematic study of the Cantabrian orocline. Immediately to its south is located the Central Iberian curve whose geometry and kinematics are under debate. Recent studies suggest that this putative structure cannot have formed in the same process as the Cantabrian orocline.

Results

Here we present a paleomagnetic and rock magnetic study from Extremadura, a region in the utmost west of the southern limb of the Central Iberian curve. Our new results show two distinct remagnetization events in Paleozoic rocks in Extremadura: (1) Mesozoic or Cenozoic remagnetization occurring in dolomitized limestones and (2) late Carboniferous remagnetization in limestones, characterized by consistent shallow inclinations, but largely scattered declinations indicating a counter clockwise (CCW) vertical axis rotation. Pyrrhotite is documented as magnetic carrier in the limestones which testifies a remagnetization under anchimetamorphic conditions, i.e. during the Variscan orogeny.

Interpretation

We interpret the declination scattering as a remagnetization coeval to the vertical axis rotation. The described CCW rotations are those expected for the southern limb of the Cantabrian orocline and are in disagreement with a late Carboniferous secondary origin for the Central Iberian bend, extending the Cantabrian orocline to at least most of the Iberian peninsula.

Keywords

Paleomagnetism Central Iberian zone Remagnetization Cantabrian orocline Carboniferous tectonics 

Resumen

Introducción

El orógeno Varisco, que en la península Ibérica está curvado y contiene el Oroclinal Cantábrico (NO de Iberia) y la curva orogénica Centro Ibérica, es el resultado más visible de la amalgamación de Pangea en el Carbonífero superior. Durante ese tiempo, la formación de Pangea produjo remagnetizaciones en todos los continentes. En Iberia, las remagnetiaciones del Carbonífero superior son muy extensas y afectan a casi todas las rocas ocultando y dificultando cualquier interpretación paleomagnética de la historia geológica anterior al Pérmico. Paradójicamente, dichas remagnetizaciones facilitaron el estudio de la cinemática del Oroclinal Cantábrico. Inmediatamente al sur de este oroclinal se sitúa la curva orogénica Centro Ibérica cuya geometría y cinemática están bajo debate. Algunos estudios recientes apuntan a la posibilidad de que la curva Centro Ibérica se formase a la vez que el Oroclinal Cantábrico.

Resultados

En este artículo presentamos los resultados paleomagnéticos obtenidos rocas Paleozoicas de Extremadura, región que contiene la sección sur-occidental de la curva Centro Ibérica. Nuestros resultados muestran dos remagnetizaciones separadas en el tiempo: 1) Una remagnetizaciión Mesozoica o Cenozoica que aparece en calizas dolomitizadas y 2) Una remagnetización del Carbonífero tardío cuyas características incluyen inclinaciones subhorizontales y declinaciones dispersas que indican una rotación de eje vertical en sentido horario. Además, hemos identificado pirrotina como mineral magnético en las calizas. Este mineral solo aparece en calizas remagnetizadas durante metamorfismo de bajo grado (anquizona).

Discusión

Interpretamos que la dispersión en la declinación registra una remagnetización que ocurrió a la vez que la rotación de ejes verticales. La rotación horaria que sugieren nuestros resultados coincide con la esperada para el flanco sur del Oroclinal Cantábrico. Estos resultados contradicen la posibilidad de que la curva Centro Ibérica y el Oroclinal Cantábrico ocurriesen al mismo tiempo y con carácter secundario respecto a la orogenia Varisca, y extienden las rotaciones de eje vertical ligadas al Oroclinal Cantábrico a todo el sur oeste de la Península Ibérica.

Palabras clave

Paleomagnetismo Zona Centro-Ibérica remagnetización Oroclina Cantábrico Tectónica del Carbonífero 

Notes

Acknowledgements

We thank Alicia López-Carmona, Piedad Franco and Eva Manchado for their assistance with thin sections. M. Suárez provided X-Ray diffraction analysis for some of the studied samples. Daniël Brouwer helped to collect and analyze the DB samples. We thank two anonymous reviewers their insights and help to improve this paper. DPG is funded by a Japan Society for Promotion of Science (JSPS) fellowship for overseas researchers (P16329) and a MEXT/JSPS KAKENHI Grant (JP16F16329). GGA is funded by the Spanish Ministry of Economy and Competitiveness under the project ODRE III-Oroclines and Delamination: Relations and Effects (CGL2013-46061-P) and project Origin, metallogeny, climatic effects and cyclicity of Large Igneous Provinces (LIPs)(№ 14.Y26.31.0012) funded by the Russian Federation. DPG wants to acknowledge Billy Shears on its 50th anniversary for this 20 years of raising my smile. This paper is part of UNESCO IGCP Projects 574: Buckling and Bent Orogens, and Continental Ribbons; 597: Amalgamation and breakup of Pangaea: The Type Example of the Supercontinent Cycle; and 648: Supercontinent Cycles and Global Geodynamics.

Supplementary material

41513_2017_39_MOESM1_ESM.txt (398 kb)
Supplementary material 1 Paleomagnetic results (.txt file, DIR type) that can be opened, and reinterpreted with the online and open source software http://www.paleomagnetism.org (TXT 398 kb)
41513_2017_39_MOESM2_ESM.txt (22 kb)
Supplementary material 2 Paleomagnetic Statistics (.txt, PMAG type) that can be opened, and reinterpreted with the online and open source software http://www.paleomagnetism.org (TXT 21 kb)
41513_2017_39_MOESM3_ESM.pdf (680 kb)
Supplementary material 3 Additional thermomagnetic runs, fitted IRM acquisition curves and common true mean direction plot. Raw data will be provided upon mail request (PDF 679 kb)

References

  1. Aerden, D. (2004). Correlating deformation in Variscan NW-Iberia using porphyroblasts; implications for the Ibero-Armorican Arc. Journal of Structural Geology, 26(1), 177–196.CrossRefGoogle Scholar
  2. Appel, E., Crouzet, C., & Schill, E. (2012). Pyrrhotite remagnetizations in the Himalaya: A review. Geological Society, London, Special Publications, 371(1), 163–180.  https://doi.org/10.1144/SP371.1.CrossRefGoogle Scholar
  3. Aubourg, C., Pozzi, J.-P., & Kars, M. (2012). Burial, claystones remagnetization and some consequences for magnetostratigraphy. Geological Society, London, Special Publications, 371(1), 181–188.  https://doi.org/10.1144/SP371.4.CrossRefGoogle Scholar
  4. Azor, A., González Lodeiro, F., & Simancas, J. F. (1994). Tectonic evolution of the boundary between the Central Iberian and Ossa-Morena zones (Variscan belt, southwest Spain). Tectonics, 13, 45–61.CrossRefGoogle Scholar
  5. Ballèvre, M., Martínez Catalán, J. R., López-Carmona, A., Pitra, P., Abati, J., Díez Fernández, R., et al. (2014). Correlation of the nappe stack in the Ibero-Armorican arc across the Bay of Biscay: A joint French-Spanish project. In K. Schulmann, J. M. Lardeaux, V. Janousek, & G. Oggiano (Eds.), The Variscan orogeny: Extent, timescale and the formation of the European crust (pp. 77–113). London: Geological Society of London, Special Publication 405.Google Scholar
  6. Barreiro, J. G., Wijbrans, J. R., Castineiras, P., Catalan, J. R. M., Arenas, R., Garcia, F. D., et al. (2006). Ar-40/Ar-39 laserprobe dating of mylonitic fabrics in a polyorogenic terrane of NW Iberia. Journal of the Geological Society, 163, 61–73.CrossRefGoogle Scholar
  7. Bea, F., Montero, P. G., Gonzalez-Lodeiro, F., Talavera, C., Molina, J. F., Scarrow, J. H., et al. (2006). Zircon thermometry and U-Pb ion-microprobe dating of the gabbros and associated migmatites of the Variscan Toledo anatectic complex, Central Iberia. Journal of the Geological Society, 163, 847–855.CrossRefGoogle Scholar
  8. Bochmann, H.G. (1956). Stratigraphie und tektonik der zentralen Extremadura in Bereich von Cáceres und der östliche Sierra de San Pedro (Spanien). Unveröff. Dies. Match. Naturviss. Fak. Univ. Münster. p. 195 (Unpublished).Google Scholar
  9. Calvín, P., Casas-Sainz, A. M., Villalaín, J. J., & Moussaid, B. (2017). Diachronous folding and cleavage in an intraplate setting (Central High Atlas, Morocco) determined through the study of remagnetizations. Journal of Structural Geology, 97, 144–160.  https://doi.org/10.1016/j.jsg.2017.02.009.CrossRefGoogle Scholar
  10. Castiñeiras, P., Villaseca, C., Barbero, L., & Romera, C. M. (2008). SHRIMP U-Pb zircon dating of anatexis in high-grade migmatite complexes of Central Spain: Implications in the Hercynian evolution of Central Iberia. International Journal of Earth Sciences, 97, 35–50.CrossRefGoogle Scholar
  11. Clariana García, M.P., Rubio Pascual, F., Montes Santiago, M.J., & González Clavijo, E.J. (2017). Mapa Geológico Digital cóntinuo E. 1: 50.000, Zona Centroibérica. Domino esquisto-grauváquico y Cuenca del Guadiana (Zona-1400). In GEODE. Mapa Geológico Digital continuo de España. (online). Retrived Apr 01, 2017 from http://info.igme.es/cartografiadigital/geologica/geodezona.aspx?Id=Z1400.
  12. Corretgé, L. G., Suárez, O., & Tena, M. (1982). Los granitos, rocas volcánicas y rocas volcanoclásticas del Sinclinal de Cáceres. Trabajos de Geología, Universidad de Oviedo, 12, 251–271.Google Scholar
  13. Dallmeyer, R. D., & Ibarguchi, J. I. G. (1990). Age of amphibolitic metamorphism in the ophiolitic unit of the Morais allochthon (Portugal): Implications for early Hercynian orogenesis in the Iberian Massif. Journal of the Geological Society, 147, 873–878.CrossRefGoogle Scholar
  14. Dallmeyer, R. D., Martínez Catalán, J. R., Arenas, R., Gil Ibarguchi, J. I., Gutiérrez-Alonso, G., Farias, P., et al. (1997). Diachronous Variscan tectonothermal activity in the NW Iberian Massif: Evidence from 40Ar/39Ar dating of regional fabrics. Tectonophysics, 277(4), 307–337.  https://doi.org/10.1016/S0040-1951(97)00035-8.CrossRefGoogle Scholar
  15. Dekkers, M. J. (1988). Magnetic properties of natural pyrrhotite part I: Behaviour of initial susceptibility and saturation-magnetization-related rock-magnetic parameters in a grain-size dependent framework. Physics of the Earth and Planetary Interiors, 52(3–4), 376–393.  https://doi.org/10.1016/0031-9201(88)90129-X.CrossRefGoogle Scholar
  16. Deenen, M. H., Langereis, C. G., van Hinsbergen, D. J. & Biggin, A. J. (2011). Geomagnetic secular variation and the statistics of palaeomagnetic directions. Geophysical Journal International, 186(2), 509–520.CrossRefGoogle Scholar
  17. Dunn, A. M., Reynolds, P. H., Clarke, D. B., & Ugidos, J. M. (1998). A comparison of the age and composition of the Shelburne dyke, Nova Scotia, and the Messejana dyke, Spain. Canadian Journal of Earth Sciences, 35, 1110–1115.CrossRefGoogle Scholar
  18. Egli, R. (2004). Characterization of individual rock magnetic components by analysis of remanence curves. Physics and Chemistry of the Earth, 29(13–14 SPEC. ISS.), 851–867.  https://doi.org/10.1016/j.pce.2004.04.001.Google Scholar
  19. Elmore, R. D., Muxworthy, A. R., & Aldana, M. (2012). Remagnetization and chemical alteration of sedimentary rocks. Geological Society, London, Special Publications, 371(1), 1–21.CrossRefGoogle Scholar
  20. Enkin, R. J., Osadetz, K. G., Baker, J., & Kisilevsky, D. (2000). Orogenic remagnetizations in the front ranges and inner foothills of the southern Canadian Cordillera: Chemical harbinger and thermal handmaiden of Cordilleran deformation. Geological Society of America Bulletin, 112(6), 929–942.  https://doi.org/10.1130/0016-7606(2000)112<929:ORITFR>2.0.CO;2.CrossRefGoogle Scholar
  21. Fernández-Lozano, J., Pastor-Galán, D., Gutiérrez-Alonso, G., & Franco, P. (2016). New kinematic constraints on the Cantabrian orocline: A paleomagnetic study from the Peñalba and Truchas synclines, NW Spain. Tectonophysics, 681, 195–208.  https://doi.org/10.1016/j.tecto.2016.02.019.CrossRefGoogle Scholar
  22. Fernandez-Suarez, J., Corfu, F., Arenas, R., Marcos, A., Martínez Catalan, J. R., Garcia, F. D., et al. (2002). U-Pb evidence for a polyorogenic evolution of the HP-HT units of the NW Iberian Massif. Contributions to Mineralogy and Petrology, 143(2), 236–253.CrossRefGoogle Scholar
  23. Franke, W. (1989). Variscan plate tectonics in Central Europe—current ideas and open questions. Tectonophysics, 169(4), 221–228.  https://doi.org/10.1016/0040-1951(89)90088-7.CrossRefGoogle Scholar
  24. Gong, Z., Dekkers, M. J., Heslop, D., & Mullender, T. A. T. (2009). End-member modelling of isothermal remanent magnetization (IRM) acquisition curves: A novel approach to diagnose remagnetization. Geophysical Journal International, 178(2), 693–701.  https://doi.org/10.1111/j.1365-246X.2009.04220.x.CrossRefGoogle Scholar
  25. Gutiérrez-Alonso, G., Collins, A. S., Fernández-Suárez, J., Pastor-Galán, D., González-Clavijo, E., Jourdan, F., et al. (2015a). Dating of lithospheric buckling: 40Ar/39Ar ages of syn-orocline strike-slip shear zones in northwestern Iberia. Tectonophysics.  https://doi.org/10.1016/j.tecto.2014.12.009.Google Scholar
  26. Gutiérrez-Alonso, G., Fernández-Suárez, J., Jeffries, T. E., Johnston, S. T., Pastor-Galán, D., Murphy, J. B., et al. (2011a). Diachronous post-orogenic magmatism within a developing orocline in Iberia, European Variscides. Tectonics.  https://doi.org/10.1029/2010TC002845.Google Scholar
  27. Gutiérrez-Alonso, G., Fernández-Suárez, J., Pastor-Galán, D., Johnston, S. T., Linnemann, U., Hofmann, M., et al. (2015b). Significance of detrital zircons in Siluro-Devonian rocks from Iberia. Journal of the Geological Society, 172(3), 309–322.CrossRefGoogle Scholar
  28. Gutiérrez-Alonso, G., Fernández-Suárez, J., & Weil, A. B. (2004). Orocline triggered lithospheric delamination. In A. B. Weil & A. Sussman (Eds.), Orogenic curvature: Integrating paleomagnetic and structural analyses (Vol. 383, pp. 121–131). Boulder: Geological Society of America, GSA Special Papers.  https://doi.org/10.1130/0-8137-2383-3(2004)383[121:OTLD]2.0.CO;2.
  29. Gutiérrez-Alonso, G., Johnston, S. T., Weil, A. B., Pastor-Galán, D., & Fernández-Suárez, J. (2012). Buckling an orogen: The Cantabrian Orocline. GSA Today, 22(7), 4–9.CrossRefGoogle Scholar
  30. Gutiérrez-Alonso, G., Murphy, J. B., Fernández-Suárez, J., Weil, A. B., Franco, M. P., & Gonzalo, J. C. (2011b). Lithospheric delamination in the core of Pangea: Sm-Nd insights from the Iberian mantle. Geology, 39(2), 155–158.  https://doi.org/10.1130/G31468.1.CrossRefGoogle Scholar
  31. Heslop, D., Dekkers, M. J., Kruiver, P. P., & Van Oorschot, I. H. M. (2002). Analysis of isothermal remanent magnetization acquisition curves using the expectation-maximization algorithm. Geophysical Journal International, 148(1), 58–64.  https://doi.org/10.1046/j.0956-540x.2001.01558.x.CrossRefGoogle Scholar
  32. Heslop, D., McIntosh, G., & Dekkers, M. J. (2004). Using time- and temperature-dependent Preisach models to investigate the limitations of modelling isothermal remanent magnetization acquisition curves with cumulative log Gaussian functions. Geophysical Journal International, 157(1), 55–63.  https://doi.org/10.1111/j.1365-246X.2004.02155.x.CrossRefGoogle Scholar
  33. Hirt, A. M., Lowrie, W., Julivert, M., & Arboleya, M. L. (1992). Paleomagnetic results in support of a model for the origin of the Asturian arc. Tectonophysics, 213(3–4), 321–339.CrossRefGoogle Scholar
  34. Huang, W., Lippert, P. C., Zhang, Y., Jackson, M. J., Dekkers, M. J., Li, J., et al. (2017). Remagnetization of carbonate rocks in southern Tibet: Perspectives from rock magnetic and petrographic investigations. Journal of Geophysical Research: Solid Earth, 122(4), 2434–2456.  https://doi.org/10.1002/2017JB013987.Google Scholar
  35. Izquierdo-Llavall, E., Sainz, A. C., Oliva-Urcia, B., Burmester, R., Pueyo, E. L., & Housen, B. (2015). Multi-episodic remagnetization related to deformation in the Pyrenean Internal Sierras. Geophysical Journal International, 201(2), 891–914.  https://doi.org/10.1093/gji/ggv042.CrossRefGoogle Scholar
  36. Julivert, M. (1971). Décollement tectonics in the Hercynian cordillera of NW Spain. American Journal of Science, 270, 1–29.CrossRefGoogle Scholar
  37. Koymans, M. R., Langereis, C. G., Pastor-Galán, D. & van Hinsbergen, D. J. (2016). Paleomagnetism. org: An online multi-platform open source environment for paleomagnetic data analysis. Computers and Geosciences, 93, 127–137.CrossRefGoogle Scholar
  38. Kruiver, P. P., Dekkers, M. J., & Heslop, D. (2001). Quantification of magnetic coercivity components by the analysis of acquisition curves of isothermal remanent magnetisation. Earth and Planetary Science Letters, 189(3–4), 269–276.  https://doi.org/10.1016/S0012-821X(01)00367-3.CrossRefGoogle Scholar
  39. Langereis, C. G., Krijgsman, W., Muttoni, G., & Menning, M. (2010). Magnetostratigraphy—concepts, definitions, and applications. Newsletters on Stratigraphy, 43(3), 207–233.  https://doi.org/10.1127/0078-0421/2010/0043-0207.CrossRefGoogle Scholar
  40. López Díaz, F. (1991). Características de la primera fase (distensiva) hercínica en la Sierra de San Pedro (Cáceres-Badajoz). Cuadernos del Laoratorio Xeolóxico de Laxe, 16, 53–63.Google Scholar
  41. López-Moro, F. J., Murciego, A. & López-Plaza, M. (2007). Silurian/Ordovician asymmetrical sill-like bodies from La Codosera syncline, W Spain: a case of tholeiitic partial melts emplaced in a single magma pulse and derived from a metasomatized mantle source. Lithos, 96(3), 567–590.CrossRefGoogle Scholar
  42. López-Carmona, A., Abati, J., Pitra, P., & Lee, J. K. W. (2014). Retrogressed lawsonite blueschists from the NW Iberian Massif: P–T–t constraints from thermodynamic modelling and 40Ar/39Ar geochronology. Contributions to Mineralogy and Petrology, 167(3), 987.  https://doi.org/10.1007/s00410-014-0987-5.CrossRefGoogle Scholar
  43. López-Moro, F. J., López-Plaza, M., Gutiérrez-Alonso, G., Fernández-Suárez, J., López-Carmona, A., Hofmann, M., et al. (2017). Crustal melting and recycling: Geochronology and sources of Variscan syn-kinematic anatectic granitoids of the Tormes Dome (Central Iberian zone). AU–Pb LA-ICP-MS study. International Journal of Earth Sciences.  https://doi.org/10.1007/s00531-017-1483-8.Google Scholar
  44. Lotze, F. (1945). Zur gliederung des Varisciden der Iberischen Meseta. Geotektonische Forschungen, 6, 78–92.Google Scholar
  45. Martínez Catalán, J. R. (2011). Are the oroclines of the Variscan belt related to late Variscan strike-slip tectonics? Terra Nova, 23(4), 241–247.  https://doi.org/10.1111/j.1365-3121.2011.01005.x.CrossRefGoogle Scholar
  46. Martínez Catalán, J. R., Aerden, D. G. A. M., & Carreras, J. (2015). The “Castilian bend” of Rudolf Staub (1926): Historical perspective of a forgotten orocline in Central Iberia. Swiss Journal of Geosciences, 108(2–3), 289–303.  https://doi.org/10.1007/s00015-015-0202-3.CrossRefGoogle Scholar
  47. Martínez Catalán, J. R., Arenas, R., Díaz García, F., & Abati, J. (1997). Variscan accretionary complex of northwest Iberia: Terrane correlation and succession of tectonothermal events. Geology, 25, 1103–1106.CrossRefGoogle Scholar
  48. Martínez Catalán, J. R., Arenas, R., & Díez Balda, M. A. (2003). Large extensional structures developed during emplacement of a crystalline thrust sheet: The Mondoñedo nappe (NW Spain). Journal of Structural Geology, 25, 1815–1839.CrossRefGoogle Scholar
  49. Martínez Poyatos, D. (2002). Estructura del borde meridional de la zona Centroibérica y su relación con el contacto entre las zonas Centroibérica y de Ossa-Morena. Laboratorio Xeolóxico de Laxe, Serie Nova Terra, A Coruña, 18(p. 295). PhD Thesis, Univ. Granada, 1997.Google Scholar
  50. Martínez Poyatos, D., Nieto, F., Azor, A., & Simancas, J. F. (2001). Relationships between very low-grade metamorphism and tectonic deformation: Examples from the southern Central Iberian zone (Iberian massif, Variscan belt). Journal Geological Society, London, 158, 953–968.CrossRefGoogle Scholar
  51. Matas, J., & Martín Parra, L.M. (2017). Mapa Geológico Digital continuo. 1: 50.000, Dominio de Obejo-Valsequillo de la Zona Centroibérica (Zona 2500). in GEODE. Mapa Geológico Digital continuo de España (online). Retrieved Apr 01, 2017, from http://info.igme.es/cartografiadigital/geologica/geodezona.aspx?Id=Z2500.
  52. Maxbauer, D. P., Feinberg, J. M., & Fox, D. L. (2016). MAX UnMix: A web application for unmixing magnetic coercivity distributions. Computers & Geosciences, 95, 140–145.  https://doi.org/10.1016/j.cageo.2016.07.009.CrossRefGoogle Scholar
  53. Mcfadden, P. L., McElhinny, M. W., & Ri, N. (1990). Classification of the reversal test in palaeomagnetism. Geophysical Journal International, 103(3), 725–729.  https://doi.org/10.1111/j.1365-246X.1990.tb05683.x.CrossRefGoogle Scholar
  54. Merino-Tomé, O. A., Bahamonde, J. R., Colmenero, J. R., Heredia, N., Villa, E., & Farias, P. (2009). Emplacement of the Cuera and Picos de Europa imbricate system at the core of the Iberian-Armorican arc (Cantabrian zone, north Spain): New precisions concerning the timing of arc closure. Geological Society of America Bulletin, 121(5–6), 729–751.  https://doi.org/10.1130/B26366.1.CrossRefGoogle Scholar
  55. Mullender, T. A. T., Frederichs, T., Hilgenfeldt, C., de Groot, L. V., Fabian, K., & Dekkers, M. J. (2016). Automated paleomagnetic and rock magnetic data acquisition with an in-line horizontal “2G” system. Geochemistry, Geophysics, Geosystems, 17, 3546–3559.  https://doi.org/10.1002/2016GC006436.CrossRefGoogle Scholar
  56. Mullender, T. A. T., van Velzen, A. J., & Dekkers, M. J. (1993). Continuous drift correction and separate identification of ferrimagnetic and paramagnetic contributions in thermomagnetic runs. Geophysical Journal International, 114(3), 663–672.  https://doi.org/10.1111/j.1365-246X.1993.tb06995.x.CrossRefGoogle Scholar
  57. Nance, R. D., Gutiérrez-Alonso, G., Keppie, J. D., Linnemann, U., Murphy, J. B., Quesada, C., et al. (2010). Evolution of the Rheic Ocean. Gondwana Research, 17(2–3), 194–222.  https://doi.org/10.1016/j.gr.2009.08.001.CrossRefGoogle Scholar
  58. Neres, M., Miranda, J. M., & Font, E. (2013). Testing Iberian kinematics at Jurassic-Cretaceous times. Tectonics, 32(5), 1312–1319.  https://doi.org/10.1002/tect.20074.CrossRefGoogle Scholar
  59. Osete, M. L., Rey, D., Villalaín, J. J., & Juárez, M. T. (1997). The late Carboniferous to late Triassic segment of the apparent polar wander path of Iberia. Geologie En Mijnbouw (Geology and Mining), 76(1/2), 105–119.  https://doi.org/10.1023/A:1003197500052.CrossRefGoogle Scholar
  60. Palencia Ortas, A., Osete, M. L., Vegas, R., & Silva, P. (2006). Paleomagnetic study of the Messejana Plasencia dyke (Portugal and Spain): A lower Jurassic paleopole for the Iberian plate. Tectonophysics, 420, 455–472.CrossRefGoogle Scholar
  61. Parés, J. M., & Van der Voo, R. (1992). Paleozoic paleomagnetism of Almaden, Spain: A cautionary note. Journal of Geophysical Research, 97(B6), 9353–9356.  https://doi.org/10.1029/91JB03073.CrossRefGoogle Scholar
  62. Parra, L. M. M., González Lodeiro, F., Martínez Poyatos, D., & Matas, J. (2006). The Puente Génave-Castelo de Vide Shear zone (southern Central Iberian zone, Iberian Massif): Geometry, kinematics and regional implications. Bulletin de la Société Géologique de France, 177, 191–202.CrossRefGoogle Scholar
  63. Pastor-Galán, D., Dekkers, M. J., Gutiérrez-Alonso, G., Brouwer, D., Groenewegen, T., Krijgsman, W., et al. (2016). Paleomagnetism of the Central Iberian curve’s putative hinge: Too many oroclines in the Iberian Variscides. Gondwana Research, 39, 96–113.  https://doi.org/10.1016/j.gr.2016.06.016.CrossRefGoogle Scholar
  64. Pastor-Galán, D., Groenewegen, T., Brouwer, D., Krijgsman, W., & Dekkers, M. J. (2015a). One or two oroclines in the Variscan orogen of Iberia? Implications for Pangea amalgamation. Geology, 43(6), 527–530.  https://doi.org/10.1130/G36701.1.CrossRefGoogle Scholar
  65. Pastor-Galán, D., Gutiérrez-Alonso, G., & Weil, A. B. (2011). Orocline timing through joint analysis: Insights from the Ibero-Armorican Arc. Tectonophysics, 507(1–4), 31–46.  https://doi.org/10.1016/j.tecto.2011.05.005.CrossRefGoogle Scholar
  66. Pastor-Galan, D., Gutierrez-Alonso, G., Zulauf, G., & Zanella, F. (2012). Analogue modeling of lithospheric-scale orocline buckling: Constraints on the evolution of the Iberian-Armorican Arc. Geological Society of America Bulletin, 124(7–8), 1293–1309.  https://doi.org/10.1130/B30640.1.CrossRefGoogle Scholar
  67. Pastor-Galán, D., Martín-Merino, G., & Corrochano, D. (2014). Timing and structural evolution in the limb of an orocline: The Pisuerga-Carrión Unit (southern limb of the Cantabrian Orocline, NW Spain). Tectonophysics, 622, 110–121.  https://doi.org/10.1016/j.tecto.2014.03.004.CrossRefGoogle Scholar
  68. Pastor-Galán, D., Mulchrone, K. F., Koymans, M. R., van Hinsbergen, D. J., & Langereis, C. G. (2017). Bootstrapped total least squares orocline test: A robust method to quantify vertical-axis rotation patterns in orogens, with examples from the Cantabrian and Aegean oroclines. Lithosphere, 9(3), 499–511.CrossRefGoogle Scholar
  69. Pastor-Galán, D., Ursem, B., Meere, P. A., & Langereis, C. (2015b). Extending the Cantabrian Orocline to two continents (from Gondwana to Laurussia). Paleomagnetism from South Ireland. Earth and Planetary Science Letters, 432, 223–231.  https://doi.org/10.1016/j.epsl.2015.10.019.CrossRefGoogle Scholar
  70. Perroud, H., Calza, F., & Khattach, D. (1991). Paleomagnetism of the Silurian Volcanism at Almaden, Southern Spain. Journal of Geophysical Research, 96(B2), 1949–1962.CrossRefGoogle Scholar
  71. Pueyo, E. L., Mauritsch, H. J., Gawlick, H.-J., Scholger, R., & Frisch, W. (2007). New evidence for block and thrust sheet rotations in the central northern Calcareous Alps deduced from two pervasive remagnetization events. Tectonics.  https://doi.org/10.1029/2006TC001965.Google Scholar
  72. Rincón, P. J., Hermosilla, J., Vegas, R., Pascual, G., Muñoz-Martín, A., & Martínez-Solares, J. M. (2000). Cálculo automático del desplazamiento en un sector del sistema falla-dique de Plasencia. Geogaceta, 27, 143–146.Google Scholar
  73. Rodríguez González, R., Medina Varea, P., González Lodeiro, F., Martín Parra, L. M., Martínez Poyatos, D., & Matas, J. (2007). Microflora y conodontos del Mississippiense en la Fm Gévora (núcleo del Sinforme La Codosera-Puebla de Obando, SO de la Zona Centroibérica). Revista de la Sociedad Geológica de España, 20(1–2), 71–88.Google Scholar
  74. Rosso de Luna, J., & Hernández Pacheco, F. (1954). Hoja geológica no 750 (Gallina), 1:50000, 1ª edición (p. 51). Madrid: I.G.M.E.Google Scholar
  75. Rubio-Ordóñez, A., García-Moreno, O., Montero, P., & Bea, F. (2016). Nuevas aportaciones a la datación cronológica de los granitos de Cabeza de Araya, (Cáceres). Geo-Temas, 16(2), 63–66.Google Scholar
  76. Santos, J.A., Apalategui, O., Carvajal, A. & Gracia, J. (1991a). Mapa Geológico de España 1.50.000, hoja no 750 (Botoa). Madrid: IGME.Google Scholar
  77. Santos, J.A., Apalategui, O., Carvajal, A. & Gracia, J. (1991b). Mapa Geológico de España (MAGNA) 1:50.000, hoja no 751 (Villar del Rey) (p. 61). Madrid: IGME.Google Scholar
  78. Santos, J. A., & Casas, J. (1979). Geología del sinclinorio de São Mamede-La Codosera. Zona española (Prov. de Cáceres y Badajoz). Boletin Geológico y Minero, 90, 420–431.Google Scholar
  79. Schwartz, S. Y., & Van der Voo, R. (1983). Paleomagnetic evaluation of the orocline hypothesis in the central and southern Appalachians. Geophysical Research Letters, 10(7), 505–508.CrossRefGoogle Scholar
  80. Shaw, J., Johnston, S. T., & Gutiérrez-Alonso, G. (2016). Orocline formation at the core of Pangea: A structural study of the Cantabrian orocline, NW Iberian Massif. Lithosphere, 8(1), 97.  https://doi.org/10.1130/L461.1.Google Scholar
  81. Shaw, J., Johnston, S. T., Gutiérrez-Alonso, G., & Weil, A. B. (2012). Oroclines of the Variscan orogen of Iberia: Paleocurrent analysis and paleogeographic implications. Earth and Planetary Science Letters, 329, 60–70.CrossRefGoogle Scholar
  82. Simancas, J. F., Martínez Poyatos, D., Expósito, I., Azor, A., & González Lodeiro, F. (2001). The structure of a major suture zone in the SW Iberian Massif: The Ossa-Morena/Central Iberian contact. Tectonophysics, 332, 295–308.CrossRefGoogle Scholar
  83. Solá, A. R., Williams, I. S., Neiva, A. M. R., & Ribeiro, M. L. (2009). U-Th-Pb SHRIMP ages and oxygen isotope composition of zircon from two contrasting late Variscan granitoids, Nisa-Albuquerque batholith, SW Iberian Massif: Petrologic and regional implications. Lithos, 111(3–4), 156–167.  https://doi.org/10.1016/j.lithos.2009.03.045.CrossRefGoogle Scholar
  84. Soldevila Bartolí, J. (1992a). La sucesión Paleozoica en el sinforme de La Codosera-Puebla de Obando (Provincias de Cáceres y Badajoz, SO de España). Estudios Geológicos, 48, 353–362.Google Scholar
  85. Soldevila Bartolí, J. (1992b). La sucesión Paleozoica en el sinforme de La Sierra de San Pedro (Provincias de Cáceres y Badajoz, SO de España). Estudios Geológicos, 48, 363–379.Google Scholar
  86. Stamatakos, J., Hirt, A. M., & Lowrie, W. (1996). The age and timing of folding in the central Appalachians from paleomagnetic results. Geological Society of America Bulletin, 108(7), 815–829.  https://doi.org/10.1130/0016-7606(1996)108<0815:TAATOF>2.3.CO;2.CrossRefGoogle Scholar
  87. Staub, R. (1926). Gedanken zur Tektonik Spaniens. Vierteljahrss- chrift der Naturforschenden Gesellschaft, (Vol. 71). Zürich.Google Scholar
  88. Tauxe, L. (2010). Essentials of paleomagnetism. Retrieved from https://scholar.google.com/scholar?cluster=682416853050055267&hl=en&oi=scholarr#0.
  89. Tauxe, L. & Watson, G. S. (1994). The fold test: an eigen analysis approach. Earth and Planetary Science Letters, 122(3–4), 331–341.CrossRefGoogle Scholar
  90. Tauxe, L., & Kent, D. V. (2004). A simplified statistical model for the geomagnetic field and the detection of shallow bias in paleomagnetic inclinations: Was the ancient magnetic field dipolar? Timescales of the Paleomagnetic field, 1, 101–115.Google Scholar
  91. Tohver, E., Weil, A. B., Solum, J. G., & Hall, C. M. (2008). Direct dating of carbonate remagnetization by 40Ar/39Ar analysis of the smectite–illite transformation. Earth and Planetary Science Letters, 274(3–4), 524–530.  https://doi.org/10.1016/j.epsl.2008.08.002.CrossRefGoogle Scholar
  92. Torsvik, T. H., van der Voo, R., Preeden, U., Mac Niocaill, C., Steinberger, B., Doubrovine, P. V., et al. (2012). Phanerozoic polar wander, palaeogeography and dynamics. Earth-Science Reviews, 114(3–4), 325–368.  https://doi.org/10.1016/j.earscirev.2012.06.007.CrossRefGoogle Scholar
  93. van der Voo, R., Stamatakos, J. A., & Pares, J. M. (1997). Kinematic constraints on thrust-belt curvature from syndeformational magnetizations in the Lagos del Valle syncline in the Cantabrian Arc, Spain. Journal of Geophysical Research-Solid Earth, 102(B5), 10105–10119.CrossRefGoogle Scholar
  94. Villamor, P. (2002). Cinemática terciaria y cuaternaria de la falla de Alentejo-Plasencia y su influencia en la peligrosidad sísmica del interior de La Península Ibérica (p. 343). Tesis Doctoral: Universidad Complutense de Madrid.Google Scholar
  95. Wallis, R.H. (1983). A lacustrine/deltaic/fluvial/swamp succession from the Stephanian B of Puertollano, Spain. In Lemos de Sousa, M.J. & Wagner, R.H. (Eds.), Papers on the Carboniferous of the Iberian peninsula (sedimentology, stratigraphy, paleontology, tectonics and geochemistry) (pp. 51–67). Ann. Fac. de Ciências, Portugal: University of Porto.Google Scholar
  96. Weil, A. B. (2006). Kinematics of orocline tightening in the core of an arc: Paleomagnetic analysis of the Ponga Unit, Cantabrian Arc, northern Spain. Tectonics.  https://doi.org/10.1029/2005TC001861.Google Scholar
  97. Weil, A. B., Gutiérrez-Alonso, G., & Conan, J. (2010). New time constraints on lithospheric-scale oroclinal bending of the Ibero-Armorican Arc: A palaeomagnetic study of earliest Permian rocks from Iberia. Journal of the Geological Society, 167(1), 127–143.  https://doi.org/10.1144/0016-76492009-002.CrossRefGoogle Scholar
  98. Weil, A. B., Gutiérrez-Alonso, G., Johnston, S. T., & Pastor-Galán, D. (2013). Kinematic constraints on buckling a lithospheric-scale orocline along the northern margin of Gondwana: A geologic synthesis. Tectonophysics, 582, 25–49.  https://doi.org/10.1016/j.tecto.2012.10.006.CrossRefGoogle Scholar
  99. Weil, A. B., & Van der Voo, R. (2002). Insights into the mechanism for orogen-related carbonate remagnetization from growth of authigenic Fe-oxide: A scanning electron microscopy and rock magnetic study of Devonian carbonates from northern Spain. Journal of Geophysical Research-Solid Earth, 107(B4), 14.CrossRefGoogle Scholar
  100. Weil, A. B., van der Voo, R., & van der Pluijm, B. A. (2001). Oroclinal bending and evidence against the Pangea megashear: The Cantabria-Asturias arc (northern Spain). Geology, 29(11), 991–994.CrossRefGoogle Scholar
  101. Weil, A. B., Van Der Voo, R., van der Pluijm, B. A., & Parés, J. M. (2000). The formation of an orocline by multiphase deformation: a paleomagnetic investigation of the Cantabria-Asturias Arc (northern Spain). Journal of Structural Geology, 22(6), 735–756.  https://doi.org/10.1016/S0191-8141(99)00188-1.CrossRefGoogle Scholar
  102. Yonkee, A., & Weil, A. B. (2010). Quantifying vertical axis rotation in curved orogens: Correlating multiple data sets with a refined weighted least squares strike test. Tectonics, 29(3), 31.  https://doi.org/10.1029/2008TC002312.CrossRefGoogle Scholar
  103. Zegers, T. E., Dekkers, M. J., & Bailly, S. (2003). Late Carboniferous to Permian remagnetization of Devonian limestones in the Ardennes: Role of temperature, fluids, and deformation. Journal of Geophysical Research: Solid Earth.  https://doi.org/10.1029/2002JB002213.Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Center for North East Asia StudiesTohoku UniversitySendaiJapan
  2. 2.Departamento de GeologíaUniversidad de SalamancaSalamancaSpain
  3. 3.Geology and Geography DepartmentTomsk State UniversityTomskRussian Federation
  4. 4.Paleomagnetic Laboratory “Fort Hoofddijk”, Department of Earth SciencesUniversiteit UtrechtUtrechtThe Netherlands

Personalised recommendations