Advertisement

Heinz–Kato inequality in Banach spaces

  • Nikolaos RoidosEmail author
Original Research Paper
  • 5 Downloads

Abstract

It is observed that in Banach spaces, sectorial operators having bounded imaginary powers satisfy a Heinz–Kato inequality.

Keywords

Sectorial operators Fractional powers Interpolation inequalities Heinz–Kato inequality 

Mathematics Subject Classification

47A30 47A63 

Notes

Compliance with ethical standards

Funding

This study was funded by Deutsche Forschungsgemeinschaft, grant SCHR 319/9-1.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. 1.
    Amann, H. 1995. Linear and quasilinear parabolic problems, Vol I, Abstract linear theory, Monographs in Mathematics, vol. 89. Basel: Birkhäuser.CrossRefGoogle Scholar
  2. 2.
    Amann, H., M. Hieber, and G. Simonett. 1994. Bounded \(H_{\infty }\)-calculus for elliptic operators. Differential Integral Equations 7 (3–4): 613–653.MathSciNetzbMATHGoogle Scholar
  3. 3.
    Bergh, J., and J. Löfström. 1976. Interpolation spaces, An Introduction, Grundlehren der mathematischen Wissenschaften 223. Berlin Heidelberg New York: Springer.zbMATHGoogle Scholar
  4. 4.
    Duong, X.T., and G. Simonett. 1997. \(H_{\infty }\)-calculus for elliptic operators with non-smooth coefficients. Differential and Integral Equations 10 (2): 201–217.MathSciNetzbMATHGoogle Scholar
  5. 5.
    Heinz, E. 1951. Beiträge zur Störungstheorie der Spektralzerlegung. Mathematische Annalen 123: 415–438.MathSciNetCrossRefGoogle Scholar
  6. 6.
    Kato, T. 1961. A generalization of the Heinz inequality. Proceeding Japan Academy 37: 305–308.MathSciNetCrossRefGoogle Scholar
  7. 7.
    Kato, T. 1952. Notes on some inequalities for linear operators. Mathematische Annalen 125 (1): 208–212.MathSciNetCrossRefGoogle Scholar
  8. 8.
    Kunstmann, P.C., and L. Weis. 2004. Maximal L p-regularity for parabolic equations, Fourier multiplier theorems and \(H^{\infty }\)-functional calculus, Functional Analytic Methods for Evolution Equations, vol. 1855. Lecture Notes in Mathematics. Berlin Heidelberg: Springer, pp. 65–311.Google Scholar
  9. 9.
    Lunardi, A. 2018. Interpolation theory, Lecture Notes Scuola Normale Superiore, 16. Pisa.Google Scholar
  10. 10.
    Schrohe, E., and J. Seiler. 2018. Bounded \(H_{\infty }\)-calculus for cone differential operators. Journal of Evolution Equations 18 (3): 1395–1425.MathSciNetCrossRefGoogle Scholar
  11. 11.
    Tanabe, H. 1979. Equations of evolution, Monographs and Studies in Mathematics. London San Francisco Melbourne: Pitman.Google Scholar
  12. 12.
    Triebel, H. 1978. Interpolation theory, function spaces, differential operators, North-Holland Mathematical Library 18. Amsterdam New York Oxford: North-Holland.Google Scholar
  13. 13.
    Yagi, A. 2010. Abstract parabolic evolution equations and their applications, Springer Monographs in Mathematics. New York: Springer.CrossRefGoogle Scholar

Copyright information

© Forum D'Analystes, Chennai 2019

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of PatrasRio PatrasGreece

Personalised recommendations