Advertisement

The Journal of Analysis

, Volume 27, Issue 4, pp 1179–1188 | Cite as

Rough convergence of sequences in a cone metric space

  • Amar Kumar BanerjeeEmail author
  • Rahul Mondal
Original Research Paper
  • 16 Downloads

Abstract

Here we have introduced the idea of rough convergence of sequences in a cone metric space. Also it has been investigated how far several basic properties of rough convergence as valid in a normed linear space are affected in a cone metric space.

Keywords

Rough convergence Rough limit point Rough limit set Cone Cone metric space 

Mathematics Subject Classiication

40A05 40A99 

Notes

References

  1. 1.
    Aytar, S. 2008. Rough statistical convergence. Numerical Functional Analysis and Optimization 29 (3–4): 291–303.MathSciNetCrossRefGoogle Scholar
  2. 2.
    Aytar, S. 2008. The rough limit set and the core of a real requence. Numerical Functional Analysis and Optimization 29 (3–4): 283–290.MathSciNetCrossRefGoogle Scholar
  3. 3.
    Banerjee, A.K., D. Anindya. 2008. Metric Spaces and Complex Analysis, New Age International (P) Limited, Publication(India), ISBN-10: 81-224-2260-8, ISBN-13: 978-81-224-2260-3(2008).Google Scholar
  4. 4.
    Chi, K.P., and T. Van An. 2011. Dugundjis theorem for cone metric spaces. Applied Mathematics Letters 24: 387–390.MathSciNetCrossRefGoogle Scholar
  5. 5.
    Long-Gung, H., and X. Zhang. 2007. Cone metric spaces and fixed point theorems of contractive mappings. Journal of Mathematical Analysis and Applications 332 (2): 1468–1476.MathSciNetCrossRefGoogle Scholar
  6. 6.
    Malik, P., and M.M. Maity. 2013. On rough convergence of double sequence in normed linear spaces. The Bulletin of the American Mathematical Society 28 (1): 89–99.MathSciNetzbMATHGoogle Scholar
  7. 7.
    Malik, P., and M. Maity. 2016. On rough statistical convergence of double sequences in normed linear spaces. Afrika Matematika 27: 141–148.MathSciNetCrossRefGoogle Scholar
  8. 8.
    Phu, H.X. 2001. Rough convergence in normed linear spaces. Numerical Functional Analysis and Optimization 22: 199–222.MathSciNetCrossRefGoogle Scholar
  9. 9.
    Phu, H.X. 2003. Rough convergence in infinite dimensional normed spaces. Numerical Functional Analysis and Optimization 24: 285–301.MathSciNetCrossRefGoogle Scholar

Copyright information

© Forum D'Analystes, Chennai 2019

Authors and Affiliations

  1. 1.Department of MathematicsThe University of Burdwan, GolapbagBurdwanIndia
  2. 2.Department of MathematicsVivekananda Satavarshiki MahavidyalayaManikparaIndia

Personalised recommendations