The generalized p-k-Mittag-Leffler function and solution of fractional kinetic equations

  • M. Kamarujjama
  • N. U. Khan
  • Owais KhanEmail author
Original Research Paper


In this paper, we define the generalized p-k-Mittag-Leffler function and investigate its various important properties such as: Mellin-Barnes integral formula, integral transforms, and fractional calculus. The generalized p-k-Mittag-Leffler function is also discussed in terms of the solution of fractional kinetic equations. Certain interesting and useful examples are considered as special cases of generalized p-k-MLF to give the applications of our main results. We also point out their relevance with known results.


Integral transforms Fractional calculus Fox-Wright function Generalized Mittag-Leffler function Fractional kinetic equations 

Mathematics Subject Classification

42A38 26A33 33E12 33C20 


Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this paper.


  1. 1.
    Agarwal, P., M. Chand, D. Baleanu, D. O’Regan, and S. Jain. 2018. On the solution of certain fractional kinetic equations involving k-Mittag-Leffler function. Advances in Differential Equations 1–13.
  2. 2.
    Agarwal, P. and J. Nieto. 2017. Some fractional integral formulas for the Mittag-Leffler type function with four parameters. Open Mathematics.
  3. 3.
    Agarwal, P., S.K. Ntouyas, S. Jain, M. Chand, and G. Singh. 2017. Fractional kinetic equations involving genralized \(k\)-Bessel function via Sumudu transform. Alexndria Engineering Journal 1-6.
  4. 4.
    Ahmed, S. 2014. On the generalized fractional integrals of the generalized Mittag-Leffler function. Springer Plus 3: 1–5.CrossRefGoogle Scholar
  5. 5.
    Chand, M., J.C. Prajaptai, and E. Bonyah. 2017. Fractional integral and solution of fractional kinetic equations involving k-Mittag-Leffler function. Transaction of A Razmadze Mathematical Institute 171: 144–166.MathSciNetCrossRefGoogle Scholar
  6. 6.
    Choi, J., and D. Kumar. 2015. Solution of generalized fractional kinetic equations involving Alpha function. Mathematical Communication 20: 113–123.zbMATHGoogle Scholar
  7. 7.
    Fox, C. 1961. The G and H functions as symmetrical Fourier kernels. Transactions of the American Mathematical Society 98: 395–429.MathSciNetzbMATHGoogle Scholar
  8. 8.
    Gehlot, K.S. 2017. Two parameter gamma function and it’s properties. 1-7. article ID: arXiv:1701.01052 [math.CA].
  9. 9.
    Haubold, H.J., and A.M. Mathai. 2000. The fractional kinetic equation and thermonuclear functions. Astrophysics Space Science 327: 53–63.CrossRefGoogle Scholar
  10. 10.
    Khan, N.U., T. Usman, and M. Ghasuddin. 2016. Some integral associated with multiindex Mittag-Leffler functions. Journal of Applied Mathematics and Informatics 34 (3): 249–255.MathSciNetCrossRefGoogle Scholar
  11. 11.
    Kilbas, A.A., and N. Sebstian. 2008. Generalized fractional integration of Bessel function of the first kind. Integral Transforms and Special Functions 19 (12): 869–883.MathSciNetCrossRefGoogle Scholar
  12. 12.
    Luchko, Y., H. Martinez, and J. Trujillo. 2008. Fractional Fourier transform and some of its applications. Fractional Calculus and Applied Analysis 11 (4): 457–470.MathSciNetzbMATHGoogle Scholar
  13. 13.
    Mathai, A.M., and R.K. Saxana. 2010. Generalized hypergeometric functions with applications. New York: Springer.Google Scholar
  14. 14.
    Nisar, K.S., S.D. Purohit, and S.R. Mondal. 2016. Generalized fractional kinetic equations involving generalized Struve function of the first kind. Journal of King Saud University-Sciences 28: 167–171.CrossRefGoogle Scholar
  15. 15.
    Pathak, R.S. 1966. Certain convergence theorems and asymptotic properties of a generalized of Lomel and maitland transformations. Proceedings of the National Academy of Sciences India A–36 (1): 81–86.Google Scholar
  16. 16.
    Romero, L., R. Cerutti, and L. Luque. 2011. A new fractional Fourier transform and convolutions products. International Journal of Pure and Applied Mathematics 66: 397–408.MathSciNetzbMATHGoogle Scholar
  17. 17.
    Saichev, A.I., and G. Zaslavsky. 1997. Fractional kinetic equations; solutions and applications. Chaos 7 (4): 753–764.MathSciNetCrossRefGoogle Scholar
  18. 18.
    Saigo, M. 1978. A remark on integral operators involving the gauss hypergeometric functions. Mathematical Reports 11: 135–143.MathSciNetzbMATHGoogle Scholar
  19. 19.
    Saxana, R.K., J. Daiya, and A. Singh. 2014. Integral transform of the k-generalized Mittag-Leffler function \(E_{k,\alpha ,\beta }^{\gamma ,\tau }(z)\). LE MATHEMATIC HE LXIX: 7-16.Google Scholar
  20. 20.
    Saxena, R.K., and S.L. Kalla. 2008. On the solutions of certain fractional kinetic equations. Applied Mathematics and Computation 199: 504–511.MathSciNetCrossRefGoogle Scholar
  21. 21.
    Shukla, A.K., and J.C. Prajapati. 2007. On a generalization of Mittag-Leffler function and its properties. Journal of Mathematical Analysis and Applications 336 (2): 797–811.MathSciNetCrossRefGoogle Scholar
  22. 22.
    Sneddon, I.N. 1979. The use of integral transforms. New York: Tata McGraw-Hill.zbMATHGoogle Scholar
  23. 23.
    Spiegel, M.R. 1965. Theory and problem of Laplace transforms, Schums Outline Series. New york: McGraw-Hill.Google Scholar
  24. 24.
    Srivastava, H.M., and P.W. Karlsson. 1985. Multiple Gaussian Hypergeometric Series, Halsted Press(Ellis Horwood Limited, Chichester). New York: Wiley.Google Scholar
  25. 25.
    Wiman, A. 1905. Uber den fundamental satz in der theorie der funktionen \(E_{\alpha }(x)\). Acta Mathematica 29 (1): 191–201.MathSciNetCrossRefGoogle Scholar

Copyright information

© Forum D'Analystes, Chennai 2019

Authors and Affiliations

  1. 1.Department of Applied MathematicsAligarh Muslim UniversityAligarhIndia

Personalised recommendations