Advertisement

Lacunary ideal summability and its applications to approximation theorem

  • Bipan Hazarika
  • Ayhan Esi
Original Research Paper
  • 12 Downloads

Abstract

An ideal I is a family of subsets of positive integers \(\mathbf {N}\) which is closed under taking finite unions and subsets of its elements. In this paper, we define and study the notion of \(I_{\theta }\)-convergence as a variant of the notion of ideal convergence, where \(\theta = (h_{r})\) is a nondecreasing sequence of positive real numbers. We further apply this notion of summability to prove a Korovkin type approximation theorem.

Keywords

I-convergence \(\theta\)-convergence Positive linear operator The Korovkin theorem 

Mathematics Subject Classification

40G15 40A99 41A10 41A25 

Notes

References

  1. 1.
    Altomare, F., and M. Campiti. 1994. Korovkin type approximation theory and its applications. Berlin: Walter de Gruyter Publ.CrossRefGoogle Scholar
  2. 2.
    Caserta, A., G. Di Maio, and L.D.R. Koc̆inac. 2011. Statistical convergence in function spaces. Abstract and Applied Analysis 2011: 11. (Article ID 420419).MathSciNetzbMATHGoogle Scholar
  3. 3.
    Cheng, L.X., G.C. Lin, Y.Y. Lan, and H. Liu. 2008. Measure theory of statistical convergence. Science In China Series A: Mathematics 51: 2285–2303.MathSciNetCrossRefGoogle Scholar
  4. 4.
    Connor, J., and M.A. Swardson. 1993. Measures and ideals of \(C^{\ast }(X)\). Annals of the New York Academy of Sciences 704: 80–91.MathSciNetCrossRefGoogle Scholar
  5. 5.
    Duman, O. 2007. A Korovkin type approximation throrems via \(I\)-convergence. Czechoslovak Mathematical Journal 75 (132): 367–375.MathSciNetCrossRefGoogle Scholar
  6. 6.
    Fast, H. 1951. Sur la convergence statistique. Colloquium Mathematicum 2: 241–244.MathSciNetCrossRefGoogle Scholar
  7. 7.
    Freedman, A.R., J.J. Sember, and M. Raphael. 1978. Some Cesaro-type summability spaces. Proceedings of the London Mathematical Society 37 (3): 508–520.MathSciNetCrossRefGoogle Scholar
  8. 8.
    Fridy, J.A. 1985. On statistical convergence. Analysis 5: 301–313.MathSciNetCrossRefGoogle Scholar
  9. 9.
    Gadjiev, A.D. 1974. The convergence problem for a sequence of positive linear operators an unbounded sets, and theorems analogous to that of P.P. Korovkin. Soviet Mathematics Doklady 15: 1433–1436.Google Scholar
  10. 10.
    Gadjiev, A.D., and C. Orhan. 2002. Some approximation theorems via statistical convergence. Rocky Mountain Journal of Mathematics 32 (1): 129–138.MathSciNetCrossRefGoogle Scholar
  11. 11.
    Korovkin, P.P. 1960. Linear operators and the theory of approximation. Delhi: Hindustan Publ. Corp.Google Scholar
  12. 12.
    Kostyrko, P., T. S̆alát, and W. Wilczyński. 2000–2001. \(I\)-convergence. Real Analysis Exchange26(2): 669–686Google Scholar
  13. 13.
    Kostyrko, P., M. Macaj, T. S̆alat, and M. Sleziak. 2005. \(I\)-convergence and Extremal \(I\)-limit points. Mathematica Slovaca 55: 443–464.MathSciNetzbMATHGoogle Scholar
  14. 14.
    Maio, G.D., and L.D.R. Koc̆inac. 2008. Statistical convergence in topology. Topology and its Applications 156: 28–45.MathSciNetCrossRefGoogle Scholar
  15. 15.
    Miller, H.I. 1995. A measure theoretical subsequence characterization of statistical convergence. Transactions of the American Mathematical Society 347 (5): 1811–1819.MathSciNetCrossRefGoogle Scholar
  16. 16.
    S̆alát, T. 1980. On statistical convergence of real numbers. Mathematica Slovaca 30: 139–150.MathSciNetGoogle Scholar
  17. 17.
    Schoenberg, I.J. 1959. The integrability of certain functions and related summability methods. American Mathematical Monthly 66: 361–375.MathSciNetCrossRefGoogle Scholar

Copyright information

© Forum D'Analystes, Chennai 2018

Authors and Affiliations

  1. 1.Department of MathematicsRajiv Gandhi UniversityDoimukhIndia
  2. 2.Department of MathematicsGauhati UniversityGuwahatiIndia
  3. 3.Department of Mathematics, Science and Art FacultyAdıyaman UniversityAdıyamanTurkey

Personalised recommendations