Advertisement

Activitas Nervosa Superior

, Volume 60, Issue 3–4, pp 95–106 | Cite as

Assisted Reproductive Technology: Stress-Related Epigenetic and Neurodevelopmental Risk?

  • H. Szőke
  • István BókkonEmail author
  • G. Kapócs
  • J. Vagedes
  • C. Saahs
  • A. Mérey
  • Z. Kovács
Ideas and Perspectives

Abstract

When a couple cannot conceive, it is commonly assumed that an underlying medical problem can be identified. However, emotional and psychological issues may play an important role in the development of infertility. In addition, assisted reproductive techniques (ARTs) themselves may add to this stress in susceptible individuals. Infertile couples may have an increased susceptibility to these adverse effects. This in turn may result in increased risks for long-term psychological and medical problems in both the parents and the newborn. Among mechanisms mediating these effects altered DNA methylation affecting epigenetic regulation, preterm delivery, vanishing twin syndrome and the persistence of cell-free fetal DNA might be particularly important. Since emotional and psychological problems are highly prevalent in this population and ARTs can adversely influence these, we suggest that a thorough psychological evaluation should be an integral part of both the evaluation process for infertility and the follow-up after assisted reproduction. Furthermore, regarding the mentioned studies here, we propose that ARTs may induce stress-related epigenetic and neurodevelopmental risk.

Keywords

ART Infertility Preterm birth Vanishing twin syndrome Neurodevelopmental and epigenetic risk 

Notes

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. Almog, B., Levin, I., Wagman, I., Kapustiansky, R., Lessing, J. B., Amit, A., & Azem, F. (2010). Adverse obstetric outcome for the vanishing twin syndrome. Reproductive Biomedicine Online, 20, 256–260.PubMedGoogle Scholar
  2. Alukal, J. P., & Lamb, D. J. (2008). Intracytoplasmic sperm injection (ICSI)--what are the risks? The Urologic Clinics of North America, 35, 277–288.PubMedPubMedCentralGoogle Scholar
  3. An, Y., Sun, Z., Li, L., Zhang, Y., & Ji, H. (2013). Relationship between psychological stress and reproductive outcome in women undergoing in vitro fertilization treatment: psychological and neurohormonal assessment. Journal of Assisted Reproduction and Genetics, 30, 35–41.PubMedGoogle Scholar
  4. Anderson, P. J., De Luca, C. R., Hutchinson, E., Spencer-Smith, M. M., Roberts, G., & Doyle, L. W. (2011). Victorian infant collaborative study group. Attention problems in a representative sample of extremely preterm/extremely low birth weight children. Developmetal Neuropsychology, 36, 57–73.Google Scholar
  5. Arabadzisz, D., Diaz-Heijtz, R., Knuesel, I., Weber, E., Pilloud, S., Dettling, A. C., Feldon, J., Law, A. J., Harrison, P. J., & Pryce, C. R. (2010). Primate early life stress leads to long-term mild hippocampal decreases in corticosteroid receptor expression. Biological Psychiatry, 67, 1106–1109.PubMedGoogle Scholar
  6. Babenko, O., Kovalchuk, I., & Metz, G. A. (2015). Stress-induced perinatal and transgenerational epigenetic programming of brain development and mental health. Neuroscience & Biobehavioral Reviews, 48, 70–91.Google Scholar
  7. Benedek, T. (1952). Infertility as a psychosomatic defense. Fertility and Sterility, 3, 527–541.PubMedGoogle Scholar
  8. Bhutta, A. T., Cleves, M. A., Casey, P. H., Cradock, M. M., & Anand, K. J. (2002). Cognitive and behavioral outcomes of school-aged children who were born preterm. JAMA, 288, 728–737.PubMedGoogle Scholar
  9. Bird, A. (2002). DNA methylation patterns and epigenetic memory. Genes & Development, 16, 6–21.Google Scholar
  10. Blandin, N., Parquet, P. J., & Bailly, D. (1994). Separation anxiety. Theoretical considerations. Encephale, 20, 121–129.PubMedGoogle Scholar
  11. Boivin, J., & Schmidt, L. (2005). Infertility-related stress in men and women predicts treatment outcome1 year later. Fertility and Sterility, 83, 1745–1752.PubMedGoogle Scholar
  12. Boivin, J., Bunting, L., Collins, J. A., & Nygren, K. G. (2007). International estimates of infertility prevalence and treatment-seeking: Potential need and demand for infertility medical care. Human Reproduction, 22, 1506–1512.PubMedGoogle Scholar
  13. Bókkon, I., Vas, J. P., Császár, N., & Lukács, T. (2014). Challenges to free will: transgenerational epigenetic information, unconscious processes and vanishing twin syndrome. Reviews in the Neurosciences, 25, 163–175.PubMedGoogle Scholar
  14. Borge, O. J., & Rognum, T. O. (2001). Intracytoplasmic sperm injection--risk of abnormalities. Tidsskrift for den Norske Lægeforening, 121, 69–72.PubMedGoogle Scholar
  15. Botting, N., Powls, A., & Cooke, R. W. I. (1997). Attention deficit hyperactivity disorders and other psychiatric outcomes in very low birthweight children at 12 years. Journal of Child Psychology and Psychiatry, 38, 931–941.PubMedGoogle Scholar
  16. Bracewell, M., & Marlow, N. (2002). Patterns of motor disability in very preterm children. Mental Retardation and Developmental Disabilities Research Reviews, 8, 241–248.PubMedGoogle Scholar
  17. Buss, C., Entringer, S., & Wadhwa, P. D. (2012a). Fetal programming of brain development: Intrauterine stress and susceptibility to psychopathology. Science Signaling, 5, pt7.PubMedGoogle Scholar
  18. Buss, C., Davis, E. P., Shahbaba, B., Pruessner, J. C., Head, K., & Sandman, C. A. (2012b). Maternal cortisol over the course of pregnancy and subsequent child amygdala & hippocampus volumes and affective problems. Proceedings of the National Academy of Sciences of the United States of America, 109, E1312–E1319.PubMedPubMedCentralGoogle Scholar
  19. Bystrova, K., Ivanova, V., Edhborg, M., Matthiesen, A. S., Ransjö-Arvidson, A. B., Mukhamedrakhimov, R., Uvnäs-Moberg, K., & Widström, A. M. (2009). Early contact versus separation: effects on mother-infant interaction one year later. Birth, 36, 97–109.PubMedGoogle Scholar
  20. Canovas, S., Ross, P. J., Kelsey, G., & Coy, P. (2017). DNA methylation in embryo development: epigenetic impact of ART (assisted reproductive technologies). Bioessays, 39.  https://doi.org/10.1002/bies.201700106.
  21. Catford, S. R., McLachlan, R. I., O’Bryan, M. K., & Halliday, J. L. (2017). Long-term follow-up of intra-cytoplasmic sperm injection-conceivedoffspring compared with in vitro fertilization-conceived offspring: a systematic review of health outcomes beyond the neonatal period. Andrology, 5, 610–621.PubMedGoogle Scholar
  22. Cavoretto, P., Candiani, M., Giorgione, V., Inversetti, A., Abu-Saba, M. M., Tiberio, F., Sigismondi, C., & Farina, A. (2018). Risk of spontaneous preterm birth in singleton pregnancies conceived after IVF/ICSI treatment: meta-analysis of cohort studies. Ultrasound in Obstetrics & Gynecology, 51, 43–53.Google Scholar
  23. Ceelen, M., van Weissenbruch, M. M., Vermeiden, J. P., van Leeuwen, F. E., & Delemarre-van de Waal, H. A. (2008a). Cardiometabolic differences in children born after in vitro fertilization: follow-up study. Journal of Clinical Endocrinology & Metabolism, 93, 1682–1688.Google Scholar
  24. Ceelen, M., van Weissenbruch, M. M., Vermeiden, J. P., van Leeuwen, F. E., & Delemarre-van de Waal, H. A. (2008b). Growth and development of children born after in vitro fertilization. Fertility and Sterility, 90, 1662–1673.PubMedGoogle Scholar
  25. Chistyakova, G., Gazieva, I., Remizova, I., Ustyantseva, L., Lyapunov, V., & Bychkova, S. (2016). Risk factors vary early preterm birth and perinatal complications after assisted reproductive technology. Gynecological Endocrinology, 32, 56–61.PubMedGoogle Scholar
  26. Choufani, S., Turinsky, A. L., Melamed, N., Greenblatt, E., Brudno, M., Bérard, A., Fraser, W. D., Weksberg, R., Trasler, J., Monnier, P., & Study Group FTDC. (2018). Impact of assisted reproduction, infertility, sex, and paternal factors on the placental DNA methylome. Human Molecular Genetics.  https://doi.org/10.1093/hmg/ddy321.
  27. Christensson, K., Cabrera, T., Christensson, E., UvnasMoberg, K., & Winberg, J. (1995). Separation distress call in the human neonate in the absence of maternal body contact. Acta Paediatrica Scandinavica, 84, 468–473.Google Scholar
  28. Clark, S. J., Lee, H. J., Smallwood, S. A., Kelsey, G., & Reik, W. (2016). Single-cell epigenomics: powerful new methods for understanding gene regulation and cell identity. Genome Biology, 17, 72.PubMedPubMedCentralGoogle Scholar
  29. Cole, J. A., & Meyers, S. A. (2011). Osmotic stress stimulates phosphorylation and cellular expression of heat shock proteins in rhesus macaque sperm. Journal of Andrology, 32, 402–410.PubMedGoogle Scholar
  30. Conde-Agudelo, A., & Díaz-Rossello, J. L. (2016). Kangaroo mother care to reduce morbidity and mortality in low birthweight infants. The Cochrane Database of Systematic Reviews, 8, CD002771.Google Scholar
  31. Cozzolino, M., Coccia, M. E., Picone, R., & Troiano, G. (2018). Quality of semen: a 6-year single experience study on 5680 patients. Minerva Endocrinologica.  https://doi.org/10.23736/S0391-1977.18.02693-7.
  32. Császár, N., & Bókkon, I. (2018). Mother-newborn separation at birth in hospitals: a possible risk for neurodevelopmental disorders? Neuroscience & Biobehavioral Reviews, 84, 337–351.Google Scholar
  33. D’Angelo, D. V., Whitehead, N., Helms, K., Barfield, W., & Ahluwalia, I. B. (2011). Birth outcomes of intended pregnancies among women who used assisted reproductive technology, ovulation stimulation, or no treatment. Fertility and Sterility, 96, 314–320.e2.PubMedGoogle Scholar
  34. Davies, M. J., Rumbold, A. R., Whitrow, M. J., Willson, K. J., Scheil, W. K., Mol, B. W., & Moore, V. M. (2016). Spontaneous loss of a co-twin and the risk of birth defects after assisted conception. Journal of Developmental Origins of Health and Disease, 7, 678–684.PubMedGoogle Scholar
  35. De Rycke, M., Liebaers, I., & Van Steirteghem, A. (2002). Epigenetic risks related to assisted reproductive technologies: risk analysis and epigenetic inheritance. Human Reproduction, 17, 2487–2494.PubMedGoogle Scholar
  36. Deaton, A. M., & Bird, A. (2011). CpG islands and the regulation of transcription. Genes & Development, 25, 1010–1022.Google Scholar
  37. Dembic, Z. (2005). The function of toll-like receptors. In T. Rich (Ed.), Toll and toll-like receptors: An immunologic perspective (pp. 18–55). Gorgetown: Landes Bioscience.Google Scholar
  38. Dettling, A. C., Feldon, J., & Pryce, C. R. (2002). Repeated parental deprivation in the infant common marmoset (Callithrix jacchus, primates) and analysis of its effects on early development. Biological Psychiatry, 52, 1037–1046.PubMedGoogle Scholar
  39. Di Santo, M., Tarozzi, N., Nadalini, M., & Borini, A. (2012). Human sperm cryopreservation: update on techniques, effect on DNA integrity, and implications for ART. Advances in Urology, 2012, 854837.PubMedGoogle Scholar
  40. Dickey, R. P., Taylor, S. N., Lu, P. Y., Sartor, B. M., Storment, J. M., Rye, P. H., Pelletier, W. D., Zender, J. L., & Matulich, E. M. (2002). Spontaneous reduction of multiple pregnancy: incidence and effect on outcome. American Journal of Obstetrics & Gynecology, 186, 77–83.Google Scholar
  41. Dole, N., Savitz, D. A., Hertz-Picciotto, I., Siega-Riz, A. M., McMahon, M. J., & Buekens, P. (2003). Maternal stress and preterm birth. American Journal of Epidemiology, 157, 14–24.PubMedGoogle Scholar
  42. Dude, A. M., Yeh, J. S., & Muasher, S. J. (2016). Donor oocytes are associated with preterm birth when compared to fresh autologous in vitro fertilization cycles in singleton pregnancies. Fertility and Sterility, 106, 660–665.PubMedGoogle Scholar
  43. Dudek-Shriber, L. (2004). Parental stress in the neonatal intensive care unit and the influence of parent and infant characteristics. The American Journal of Occupational Therapy, 58, 509–520.PubMedGoogle Scholar
  44. Dunietz, G. L., Holzman, C., McKane, P., Li, C., Boulet, S. L., Todem, D., Kissin, D. M., Copeland, G., Bernson, D., Sappenfield, W. M., & Diamond, M. P. (2015). Assisted reproductive technology and the risk of preterm birth among primiparas. Fertility and Sterility, 103, 974–979.e1.PubMedPubMedCentralGoogle Scholar
  45. Dunietz, G. L., Holzman, C., Zhang, Y., Li, C., Todem, D., Boulet, S. L., McKane, P., Kissin, D. M., Copeland, G., Bernso, D., & Diamond, M. P. (2017). Assisted reproduction and risk of preterm birth in singletons by infertility diagnoses and treatment modalities: a population-based study. Journal of Assisted Reproduction and Genetics, 34, 1529–1535.PubMedPubMedCentralGoogle Scholar
  46. Elverson, C. A., Wilson, M. E., Hertzog, M. A., & French, J. A. (2012). Social regulation of the stress response in the transitional newborn: a pilot study. Journal of Pediatric Nursing, 27, 214–224.PubMedGoogle Scholar
  47. Engin-Ustun, Y., Yılmaz, N., Akgun, N., Aktulay, A., Tuzluoğlu, A. D., & Bakırarar, B. (2018). Body mass index effects Kruger’s criteria in infertile men. International Journal of Fertility & Sterility, 11, 258–262.Google Scholar
  48. Enninga, E. A., Nevala, W. K., Holtan, S. G., & Markovic, S. N. (2015). Immune reactivation by cell-free fetal DNA in healthy pregnancies re-purposed to target tumors: novel checkpoint inhibition in cancer therapeutics. Frontiers in Immunology, 6, 424.PubMedPubMedCentralGoogle Scholar
  49. Esteves, S. C., Roque, M., Bedoschi, G., Haahr, T., & Humaidan, P. (2018). Intracytoplasmic sperm injection for male infertility and consequences for offspring. Nature Reviews Urology, 15, 535–562.PubMedGoogle Scholar
  50. Estill, M. S., Bolnick, J. M., Waterland, R. A., Bolnick, A. D., Diamond, M. P., & Krawetz, S. A. (2016). Assisted reproductive technology alters deoxyribonucleic acid methylation profiles in bloodspots of newborn infants. Fertility and Sterility, 106, 629–639.e10.PubMedGoogle Scholar
  51. Evron, E., Sheiner, E., Friger, M., Sergienko, R., & Harlev, A. (2015). Vanishing twin syndrome: is it associated with adverse perinatal outcome? Fertility and Sterility, 103, 1209–1214.PubMedGoogle Scholar
  52. Falco, P., Milano, V., Pilu, G., David, C., Grisolia, G., Rizzo, N., & Bovicelli, L. (1996). Sonography of pregnancies with first-trimester bleeding and a viable embryo: a study of prognostic indicators by logistic regression analysis. Ultrasound in Obstetrics & Gynecology, 7, 165–169.Google Scholar
  53. Fauque, P., Mondon, F., Letourneur, F., Ripoche, M. A., Journot, L., Barbaux, S., Dandolo, L., Patrat, C., Wolf, J. P., Jouannet, P., Jammes, H., & Vaiman, D. (2010). In vitro fertilization and embryo culture strongly impact the placental transcriptome in the mouse model. PLoS One, 5(2), e9218.PubMedPubMedCentralGoogle Scholar
  54. Ford, E. S. C., Forman, I., Willson, J. R., Char, W., Mixson, W. T., & Scholz, C. (1953). A psychodynamic approach to the study of infertility. Fertility and Sterility, 4, 456–465.PubMedGoogle Scholar
  55. Fortunato, A., & Tosti, E. (2011). The impact of in vitro fertilization on health of the children: an update. European Journal of Obstetrics & Gynecology and Reproductive Biology, 154, 125–129.Google Scholar
  56. Ghosh, J., Coutifaris, C., Sapienza, C., & Mainigi, M. (2017). Global DNA methylation levels are altered by modifiable clinical manipulations in assisted reproductive technologies. Clinical Epigenetics, 9, 14.PubMedPubMedCentralGoogle Scholar
  57. Giorgione, V., Parazzini, F., Fesslová, V., Cipriani, S., Candiani, M., Inversetti, A., Sigismondi, C., Tiberio, F., & Cavoretto, P. (2018). Congenital heart defects in IVF/ICSI pregnancy: Systematic review and meta-analysis. Ultrasound in Obstetrics & Gynecology, 51, 33–42.Google Scholar
  58. Govindaraju, D., Atzmon, G., & Barzilai, N. (2015). Genetics, lifestyle and longevity: lessons from centenarians. Applied & Translational Genomics, 4, 23–32.Google Scholar
  59. Gräff, J., Kim, D., Dobbin, M. M., & Tsai, L. H. (2011). Epigenetic regulation of gene expression in physiological and pathological brain processes. Physiological Reviews, 91, 603–649.PubMedGoogle Scholar
  60. Grigorenko, E. L., Kornilov, S. A., & Naumova, O. Y. (2016). Epigenetic regulation of cognition: a circumscribed review of the field. Development and Psychopathology, 28, 1285–1304.PubMedGoogle Scholar
  61. Guan, J. S., Xie, H., & Ding, X. (2015). The role of epigenetic regulation in learning and memory. Experimental Neurology, 268, 30–36.PubMedGoogle Scholar
  62. Guilherme Monte Cassiano, R., Gaspardo, C. M., Cordaro Bucker Furini, G., Martinez, F. E., & Martins Linhares, M. B. (2016). Impact of neonatal risk and temperament on behavioral problems in toddlers born preterm. Early Human Development, 103, 175–181.PubMedGoogle Scholar
  63. Hammadeh, M. E., Fischer-Hammadeh, C., & Ali, K. R. (2011). Assisted hatching in assisted reproduction: a state of the art. Journal of Assisted Reproduction and Genetics, 28, 119–128.PubMedGoogle Scholar
  64. Hanevik, H. I., Hessen, D. O., Sunde, A., & Breivik, J. (2016). Can IVF influence human evolution? Human Reproduction, 31, 1397–1402.PubMedGoogle Scholar
  65. Hansen, M., Kurinczuk, J. J., Bower, C., & Webb, S. (2002). The risk of major birth defects after intracytoplasmic sperm injection and in vitro fertilization. New England Journal of Medicine, 346, 725–730.PubMedGoogle Scholar
  66. Hansen, M., Bower, C., Milne, E., de Klerk, N., & Kurinczuk, J. J. (2005). Assisted reproductive technologies and the risk of birth defects--a systematic review. Human Reproduction, 20, 328–338.PubMedGoogle Scholar
  67. Hatırnaz, Ş., & Kanat Pektaş, M. (2017). Day 3 embryo transfer versus day 5 blastocyst transfers: a prospective randomized controlled trial. Turkish Journal of Obstetrics and Gynecology, 14, 82–88.PubMedPubMedCentralGoogle Scholar
  68. Hediger, M. L., Bell, E. M., Druschel, C. M., & Buck Louis, G. M. (2013). Assisted reproductive technologies and children’s neurodevelopmental outcomes. Fertility and Sterility, 99, 311–317.PubMedPubMedCentralGoogle Scholar
  69. Hezavehei, M., Sharafi, M., Kouchesfahani, H. M., Henkel, R., Agarwal, A., Esmaeili, V., & Shahverdi, A. (2018). Sperm cryopreservation: a review on current molecular cryobiology and advanced approaches. Reproductive Biomedicine Online.Google Scholar
  70. Hoffenkamp, H. N., Braeken, J., Hall, R. A., Tooten, A., Vingerhoets, A. J., & van Bakel, H. J. (2015). Parenting in complex conditions: does preterm birth provide a context for the development of less optimal parental behavior? Journal of Pediatric Psychology, 40, 559–571.PubMedGoogle Scholar
  71. Huddy, C. L., Johnson, A., & Hope, P. L. (2001). Educational and behavioural problems in babies of 32-35 weeksgestation. Archives of Disease in Childhood. Fetal and Neonatal Edition, 85, F23–F28.PubMedPubMedCentralGoogle Scholar
  72. Hussain, N. (2012). Epigenetic influences that modulate infant growth, development, and disease. Antioxidants & Redox Signaling, 17, 224–236.Google Scholar
  73. Imani, S., Panahi, Y., Salimian, J., Fu, J., & Ghanei, M. (2015). Epigenetic: a missing paradigm in cellular and molecular pathways of sulfur mustard lung: a prospective and comparative study. Iranian Journal of Basic Medical Sciences, 18, 723–736.PubMedPubMedCentralGoogle Scholar
  74. Ionio, C., & Di Blasio, P. (2014). Post-traumatic stress symptoms after childbirth and early mother-child interaction: An exploratory study. Journal of Reproductive and Infant Psychology, 32, 163–181.Google Scholar
  75. Ionio, C., Colombo, C., Brazzoduro, V., Mascheroni, E., Confalonieri, E., Castoldi, F., & Lista, G. (2016). Mothers and fathers in NICU: the impact of preterm birth on parental distress. European Journal of Psychology, 12, 604–621.Google Scholar
  76. Janevic, T., Kahn, L. G., Landsbergis, P., Cirillo, P. M., Cohn, B. A., Liu, X., & Factor-Litvak, P. (2014). Effects of work and life stress on semen quality. Fertility and Sterility, 102, 530–538.PubMedPubMedCentralGoogle Scholar
  77. Jin, B., Li, Y., & Robertson, K. D. (2011). DNA methylation: superior or subordinate in the epigenetic hierarchy? Genes & Cancer, 2, 607–617.Google Scholar
  78. Jirtle, R. L., & Skinner, M. K. (2007). Environmental epigenomics and disease susceptibility. Nature Reviews Genetics, 8, 253–262.PubMedPubMedCentralGoogle Scholar
  79. Johnson, S. (2007). Cognitive and behavioural outcomes following very preterm birth. Seminars in Fetal and Neonatal Medicine, 12, 363–373.PubMedGoogle Scholar
  80. Johnson, S., & Marlow, N. (2011). Preterm birth and childhood psychiatric disorders. Pediatric Research, 69, 11R–18R.PubMedGoogle Scholar
  81. Kanherkar, R. R., Bhatia-Dey, N., & Csoka, A. B. (2014). Epigenetics across the human lifespan. Frontiers in Cell and Developmental Biology, 2, 49.PubMedPubMedCentralGoogle Scholar
  82. Katari, S., Turan, N., Bibikova, M., Erinle, O., Chalian, R., Foster, M., Gaughan, J. P., Coutifaris, C., & Sapienza, C. (2009). DNA methylation and gene expression differences in children conceived in vitro or in vivo. Human Molecular Genetics, 18, 3769–3778.PubMedPubMedCentralGoogle Scholar
  83. Kedem, P., Bartoov, B., Mikulincer, M., & Shkolnik, T. (1991). Psychoneuroimmunology and male infertility: a possible link between stress, coping and male immunological infertility. Psychology & Health, 6, 159–173.Google Scholar
  84. Kim, S., & Kaang, B. K. (2017). Epigenetic regulation and chromatin remodeling in learning and memory. Experimental & Molecular Medicine, 49, e281.Google Scholar
  85. Kleijkers, S. H., Mantikou, E., Slappendel, E., Consten, D., van Echten-Arends, J., Wetzels, A. M., van Wely, M., Smits, L. J., van Montfoort, A. P., Repping, S., Dumoulin, J. C., & Mastenbroek, S. (2016). Influence of embryo culture medium (G5 and HTF) on pregnancy and perinatal outcome after IVF: a multicenter RCT. Human Reproduction, 31, 2219–2230.PubMedGoogle Scholar
  86. Kocełak, P., Chudek, J., Naworska, B., Bąk-Sosnowska, M., Kotlarz, B., Mazurek, M., Madej, P., Skrzypulec-Plinta, V., Skałba, P., & Olszanecka-Glinianowicz, M. (2012). Psychological disturbances and quality of life in obese and infertile women and men. International Journal of Endocrinology, 2012, 236217.PubMedPubMedCentralGoogle Scholar
  87. Koscinski, I., Merten, M., Kazdar, N., & Guéant, J. L. (2018). Culture conditions for gametes and embryos: which culture medium? Which impact on newborn. Gynecologie, Obstetrique, Fertilite & Senologie, 46, 474–480.Google Scholar
  88. Kristoffersen, L., Støen, R., Rygh, H., Sognnæs, M., Follestad, T., Mohn, H. S., Nissen, I., & Bergseng, H. (2016). Early skin-to-skin contact or incubator for very preterm infants: study protocol for a randomized controlled trial. Trials, 17, 593.PubMedPubMedCentralGoogle Scholar
  89. Kumar, N., & Singh, A. K. (2015). Trends of male factor infertility, an important cause of infertility: a review of literature. Journal of Human Reproductive Sciences, 8, 191–196.PubMedPubMedCentralGoogle Scholar
  90. Landy, H. J., & Keith, L. G. (1998). The vanishing twin: a review. Human Reproduction Update, 4, 177–183.PubMedGoogle Scholar
  91. Landy, H. J., Weiner, S., Corson, S. L., & Batzer, F. R. (1986). The “vanishing twin”: ultrasonographic assessment of fetal disappearance in the first trimester. American Journal of Obstetrics & Gynecology, 155, 14–19.Google Scholar
  92. Larriba, E., & del Mazo, J. (2016). Role of non-coding RNAs in the transgenerational epigenetic transmission of the effects of reprotoxicants. International Journal of Molecular Sciences, 17, 452.PubMedPubMedCentralGoogle Scholar
  93. Latham, K. E., Sapienza, C., & Engel, N. (2012). The epigenetic lorax: gene-environment interactions in human health. Epigenomics, 4, 383–402.PubMedPubMedCentralGoogle Scholar
  94. Laudenslager, M. L., Boccia, M. L., Berger, C. L., Gennaro-Ruggles, M. M., McFerran, B., & Reite, M. L. (1995). Total cortisol, free cortisol, and growth hormone associated with brief social separation experiences in young macaques. Developmental Psychobiology, 28, 199–211.PubMedGoogle Scholar
  95. Law, A. J., Pei, Q., Walker, M., Gordon-Andrews, H., Weickert, C. S., Feldon, J., Pryce, C. R., & Harrison, P. J. (2009). Early parental deprivation in the marmoset monkey produces long-term changes in hippocampal expression of genes involved in synaptic plasticity and implicated in mood disorder. Neuropsychopharmacology, 34, 1381–1394.PubMedGoogle Scholar
  96. Lefkowitz, D. S., Baxt, C., & Evans, J. R. (2010). Prevalence and correlates of posttraumatic stress and postpartum depression in parents of infants in the Neonatal Intensive Care Unit (NICU). Journal of Clinical Psychology in Medical Settings, 17, 230–237.PubMedGoogle Scholar
  97. Li, E., & Zhang, Y. (2014). DNA methylation in mammals. Cold Spring Harbor Perspectives in Biology, 6(5), a019133.PubMedPubMedCentralGoogle Scholar
  98. Liu, Y., Maekawa, T., Yoshida, K., Kaneda, H., Chatton, B., Wakana, S., & Ishii, S. (2017). The transcription factor ATF7 mediates in vitro fertilization-induced gene expression changes in mouse liver. FEBS Open Bio, 7, 1598–1610.PubMedPubMedCentralGoogle Scholar
  99. Loke, Y. J., Galati, J. C., Saffery, R., & Craig, J. M. (2015). Association of in vitro fertilization with global and IGF2/H19 methylation variation in newborn twins. Journal of Developmental Origins of Health and Disease, 6, 115–124.PubMedGoogle Scholar
  100. Louis, G. M., Lum, K. J., Sundaram, R., Chen, Z., Kim, S., Lynch, C. D., Schisterman, E. F., & Pyper, C. (2011). Stress reduces conception probabilities across the fertile window: Evidence in support of relaxation. Fertility and Sterility, 95, 2184–2189.PubMedGoogle Scholar
  101. Lu, Y. H., Wang, N., & Jin, F. (2013). Long-term follow-up of children conceived through assisted reproductive technology. Journal of Zheijang University Science B, 14, 359–371.Google Scholar
  102. Lusignan, M. F., Li, X., Herrero, B., Delbes, G., & Chan, P. T. K. (2018). Effects of different cryopreservation methods on DNA integrity and sperm chromatin quality in men. Andrology.  https://doi.org/10.1111/andr.12529.
  103. Magnus, M. C., Ghaderi, S., Morken, N. H., Magnus, P., Bente Romundstad, L., Skjærven, R., Wilcox, A. J., & Eldevik Håberg, S. (2017). Vanishing twin syndrome among ART singletons and pregnancy outcomes. Human Reproduction, 32, 2298–2304.PubMedGoogle Scholar
  104. Mann, M. R., Lee, S. S., Doherty, A. S., Verona, R. I., Nolen, L. D., Schultz, R. M., & Bartolomei, M. S. (2004). Selective loss of imprinting in the placenta following preimplantation development in culture. Development, 131, 3727–3735.PubMedGoogle Scholar
  105. Mansour, R., Serour, G., Aboulghar, M., Kamal, O., & Al-Inany, H. (2010). The impact of vanishing fetuses on the outcome of ICSI pregnancies. Fertility and Sterility, 94, 2430–2432.PubMedGoogle Scholar
  106. Martinez, C. A., Nohalez, A., Parrilla, I., Motas, M., Roca, J., Romero, I., García-Gonza Lez, D. L., Cuello, C., Rodriguez-Martinez, H., Martinez, E. A., & Gil, M. A. (2017). The overlaying oil type influences in vitro embryo production: differences in composition and compound transfer into incubation medium between oils. Scientific Reports, 7, 10505.PubMedPubMedCentralGoogle Scholar
  107. McDonald, S. D., Han, Z., Mulla, S., Murphy, K. E., Beyene, J., Ohlsson, A., & Knowledge Synthesis Group. (2009). Preterm birth and low birth weight among in vitro fertilization singletons: a systematic review and meta-analyses. European Journal of Obstetrics & Gynecology and Reproductive Biology, 146, 138–148.Google Scholar
  108. McGovern, P. G., Llorens, A. J., Skurnick, J. H., Weiss, G., & Goldsmith, L. T. (2004). Increased risk of preterm birth in singleton pregnancies resulting from in vitro fertilization-embryo transfer or gamete intrafallopian transfer: a meta-analysis. Fertility and Sterility, 82, 1514–1520.PubMedGoogle Scholar
  109. McGrady, A. V. (1984). Effects of psychological stress on male reproduction: a review. Archives of Andrology, 13, 1–7.PubMedGoogle Scholar
  110. Mitsi, C., & Efthimiou, K. (2014). Infertility: psychological-psychopathological consequences and cognitive-behavioural interventions. Psychiatriki, 25, 293–302.PubMedGoogle Scholar
  111. Morgan, B. E., Horn, A. R., & Bergman, N. J. (2011). Should neonates sleep alone? Biological Psychiatry, 70, 817–825.PubMedGoogle Scholar
  112. Mozley, P. D. (1976). Psychophysiologic infertility: an overview. Clinical Obstetrics and Gynecology, 19, 407–417.PubMedGoogle Scholar
  113. Murao, N., Noguchi, H., & Nakashima, K. (2016). Epigenetic regulation of neural stem cell property from embryo to adult. Neuroepigenetics, 5, 1–10.Google Scholar
  114. Mwaniki, M. K., Atieno, M., Lawn, J. E., & Newton, C. R. (2012). Long-term neurodevelopmental outcomes after intrauterine and neonatal insults: a systematic review. Lancet, 379, 445–452.PubMedPubMedCentralGoogle Scholar
  115. Nelissen, E. C., Dumoulin, J. C., Daunay, A., Evers, J. L., Tost, J., & van Montfoort, A. P. (2013). Placentas from pregnancies conceived by IVF/ICSI have a reduced DNA methylation level at the H19 and MEST differentially methylated regions. Human Reproduction, 28, 1117–1126.PubMedGoogle Scholar
  116. Nestler, E. J. (2016). Transgenerational epigenetic contributions to stress responses: fact or fiction? PLoS Biology, 14, e1002426.PubMedPubMedCentralGoogle Scholar
  117. Niles, K. M., Murji, A., & Chitayat, D. (2018). Prolonged duration of persistent cell free fetal DNA from a vanishing twin. Ultrasound in Obstetrics Gynecology.  https://doi.org/10.1002/uog.19004.
  118. Nordkap, L., Jensen, T. K., Hansen, Å. M., Lassen, T. H., Bang, A. K., Joensen, U. N., Blomberg Jensen, M., Skakkebæk, N. E., & Jørgensen, N. (2016). Psychological stress and testicular function: a cross-sectional study of 1,215 Danish men. Fertility and Sterility, 105, 174–187.PubMedGoogle Scholar
  119. O’Doherty, A. M., McGettigan, P., Irwin, R. E., Magee, D. A., Gagne, D., Fournier, E., Al-Naib, A., Sirard, M. A., Walsh, C. P., Robert, C., & Fair, T. (2018). Intragenic sequences in the trophectoderm harbour the greatest proportion of methylation errors in day 17 bovine conceptuses generated using assisted reproductive technologies. BMC Genomics, 19, 438.PubMedPubMedCentralGoogle Scholar
  120. Ostertag, E. M., & Kazazian, H. H., Jr. (2001). Biology of mammalian L1 retrotransposons. Annual Review of Genetics, 35, 501–538.PubMedGoogle Scholar
  121. Pereira, N., Pryor, K. P., Petrini, A. C., Lekovich, J. P., Stahl, J., Elias, R. T., & Spandorfer, S. D. (2016). Perinatal risks associated with early vanishing twin syndrome following transfer of cleavage- or blastocyst-stage embryos. Journal of Pregnancy, 2016, 1245210.PubMedPubMedCentralGoogle Scholar
  122. Petrini, A. C., Pereira, N., Lekovich, J. P., Elias, R. T., & Spandorfer, S. D. (2016). Early spontaneous multiple fetal pregnancy reduction is associated with adverse perinatal outcomes in in vitro fertilization cycles. Womens Health (Lond), 12, 420–426.Google Scholar
  123. Phillippe, M., & Adeli, S. (2017). Cell-free DNA release by mouse placental explants. PLoS One, 12, e0178845.PubMedPubMedCentralGoogle Scholar
  124. Pinborg, A., Lidegaard, Ø., la Cour Freiesleben, N., & Andersen, A. N. (2005). Consequences of vanishing twins in IVF/ICSI pregnancies. Human Reproduction, 20, 2821–2829.PubMedGoogle Scholar
  125. Pinborg, A., Wennerholm, U. B., Romundstad, L. B., Loft, A., Aittomaki, K., Söderström-Anttila, V., Nygren, K. G., Hazekamp, J., & Bergh, C. (2013). Why do singletons conceived after assisted reproduction technology have adverse perinatal outcome? Systematic review and meta-analysis. Human Reproduction Update, 19, 87–104.PubMedGoogle Scholar
  126. Pribenszky, C., Horváth, A., Végh, L., Huang, S. Y., Kuo, Y. H., & Szenci, O. (2011). Stress preconditioning of boar spermatozoa: a new approach to enhance semen quality. Reproduction in Domestic Animals, 46, 26–30.PubMedGoogle Scholar
  127. Pryce, C. R., Dettling, A. C., Spengler, M., Schnell, C. R., & Feldon, J. (2004). Deprivation of parenting disrupts development of homeostatic and reward systems in marmoset monkey offspring. Biological Psychiatry, 56, 72–79.PubMedGoogle Scholar
  128. Ramezanzadeh, F., Noorbala, A. A., Abedinia, N., Rahimi Forooshani, A., & Naghizadeh, M. M. (2011). Psychiatric intervention improved pregnancy rates in infertile couples. Malaysian Journal of Medical Sciences, 18, 16–24.PubMedGoogle Scholar
  129. Ramokolo, V., Goga, A. E., Lombard, C., Doherty, T., Jackson, D. J., & Engebretsen, I. M. (2017). In utero art exposure and birth and early growth outcomes among hiv-exposed uninfected infants attending immunization services: Results from national PMTCT surveillance, South Africa. Open Forum Infectious Diseases, 4, ofx187.PubMedPubMedCentralGoogle Scholar
  130. Ren, L., Wang, Z., An, L., Zhang, Z., Tan, K., Miao, K., Tao, L., Cheng, L., Zhang, Z., Yang, M., Wu, Z., & Tian, J. (2015). Dynamic comparisons of high-resolution expression profiles highlighting mitochondria-related genes between in vivo and in vitro fertilized early mouse embryos. Human Reproduction, 30, 2892–2911.PubMedGoogle Scholar
  131. Reuven, E. M., Fink, A., & Shai, Y. (2014). Regulation of innate immune responses by transmembrane interactions: lessons from the TLR family. Biochimica et Biophysica Acta, 1838, 1586–1593.PubMedGoogle Scholar
  132. Ricci, E., AI Beitawi, S., Cipriani, S., Candiani, M., Chiaffarino, F., Viganò, P., Noli, S., & Parazzini, F. (2017). Semen quality and alcohol intake: a systematic review and meta-analysis. Reproductive Biomedicine Online, 34, 38–47.PubMedGoogle Scholar
  133. Rivera, R. M., Stein, P., Weaver, J. R., Mager, J., Schultz, R. M., & Bartolomei, M. S. (2008). Manipulations of mouse embryos prior to implantation result in aberrant expression of imprinted genes on day 9.5 of development. Human Molecular Genetics, 17, 1–14.PubMedGoogle Scholar
  134. Rosenfeld, D. L., & Mitchell, E. (1979). Treating the emotional aspects of infertility: counseling services in an infertility clinic. American Journal of Obstetrics & Gynecology, 135, 177–180.Google Scholar
  135. Roy, M. C., Dupras, C., & Ravitsky, V. (2017). The epigenetic effects of assisted reproductive technologies: ethical considerations. Journal of Developmental Origins of Health and Disease, 8, 436–442.PubMedGoogle Scholar
  136. Scher, M. S., Ludington-Hoe, S., Kaffashi, F., Johnson, M. W., Holditch-Davis, D., & Loparob, K. A. (2009). Neurophysiologic assessment of brain maturation after an 8-week trial of skin-to-skin contact on preterm infants. Clinical Neurophysiology, 120, 1812–1818.PubMedPubMedCentralGoogle Scholar
  137. Schieve, L. A., Rasmussen, S. A., Buck, G. M., Schendel, D. E., Reynolds, M. A., & Wright, V. C. (2004). Are children born after assisted reproductive technology at increased risk for adverse health outcomes? Obstetrics & Gynecology, 103, 1154–1163.Google Scholar
  138. Seibel, M. M., & Taymor, M. L. (1982). Emotional aspects of infertility. Fertility and Sterility, 37, 137–145.PubMedGoogle Scholar
  139. Sharma, R., Harlev, A., Agarwal, A., & Esteves, S. C. (2016). Cigarette smoking and semen quality: a new meta-analysis examining the effect of the 2010 World Health Organization Laboratory Methods for the examination of human semen. European Urology, 70, 635–645.PubMedGoogle Scholar
  140. Simões, R. V., Muñoz-Moreno, E., Cruz-Lemini, M., Eixarch, E., Bargalló, N., Sanz-Cortés, M., & Gratacós, E. (2017). Brain metabolite alterations in infants born preterm with intrauterine growth restriction: association with structural changes and neurodevelopmental outcome. American Journal of Obstetrics & Gynecology, 216, 62.e1–62.e14.Google Scholar
  141. Sinha, R. (2008). Chronic stress, drug use, and vulnerability to addiction. Annals of the New York Academy of Sciences, 1141, 105–130.PubMedPubMedCentralGoogle Scholar
  142. Sinha, R., & Jastreboff, A. M. (2013). Stress as a common risk factor for obesity and addiction. Biological Psychiatry, 73, 827–835.PubMedPubMedCentralGoogle Scholar
  143. Smeenk, J. M., Verhaak, C. M., Vingerhoets, A. J., Sweep, C. G., Merkus, J. M., Willemsen, S. J., van Minnen, A., Straatman, H., & Braat, D. D. (2005). Stress and outcome success in IVF: the role of self-reports and endocrine variables. Human Reproduction, 20, 991–996.PubMedGoogle Scholar
  144. Soleimani, F., Zaheri, F., & Abdi, F. (2014). Long-term neurodevelopmental outcomes after preterm birth. Iranian Red Crescent Medical Journal, 16(6), e17965.PubMedPubMedCentralGoogle Scholar
  145. Sominsky, L., Hodgson, D. M., McLaughlin, E. A., Smith, R., Wall, H. M., & Spencer, S. J. (2017). Linking stress and infertility: a novel role for ghrelin. Endocrine Reviews, 38, 432–467.PubMedGoogle Scholar
  146. Stabile, I., Campbell, S., & Grudzinskas, J. G. (1987). Ultrasound assessment in complications of first trimester pregnancy. Lancet, 2(8570), 1237–1240.PubMedGoogle Scholar
  147. Stoeckel, W. (1945). Lehbuch der Geburtschilfe. Jena: Gustav Fischer (Quoted in Levi, 1976).Google Scholar
  148. Strömberg, B., Dahlquist, G., Ericson, A., Finnström, O., Köster, M., & Stjernqvist, K. (2002). Neurological sequelae in children born after in-vitro fertilisation: a population-based study. Lancet, 359, 461–465.PubMedGoogle Scholar
  149. Suzuki, N., Kamataki, A., Yamaki, J., & Homma, Y. (2008). Characterization of circulating DNA in healthy human plasma. Clinica Chimica Acta, 387, 55–58.Google Scholar
  150. Szmulewicz, M. N., Novick, G. E., & Herrera, R. J. (1998). Effects of Alu insertions on gene function. Electrophoresis, 19, 1260–1264.PubMedGoogle Scholar
  151. Tan, K., Zhang, Z., Miao, K., Yu, Y., Sui, L., Tian, J., & An, L. (2016). Dynamic integrated analysis of DNA methylation and gene expression profiles in in vivo and in vitro fertilized mouse post-implantation extraembryonic and placental tissues. Molecular Human Reproduction, 22, 485–498.PubMedGoogle Scholar
  152. Tancredy, C. M., & Fraley, R. C. (2006). The nature of adult twin relationships: an attachment-theoretical perspective. Journal of Personality and Social Psychology, 90, 78–93.PubMedGoogle Scholar
  153. Turan, N., Katari, S., Gerson, L. F., Chalian, R., Foster, M. W., Gaughan, J. P., Coutifaris, C., & Sapienza, C. (2010). Inter- and intra-individual variation in allele-specific DNA methylation and gene expression in children conceived using assisted reproductive technology. PLoS Genetics, 6(7), e1001033.PubMedPubMedCentralGoogle Scholar
  154. Valderramos, S. G., Rao, R. R., Scibetta, E. W., Silverman, N. S., Han, C. S., & Platt, L. D. (2016). Cell-free DNA screening in clinical practice: abnormal autosomal aneuploidy and microdeletion results. Americen Journal of Obstetrics and Gynecology, 215, 626.e1–626.e10.Google Scholar
  155. van Montfoort, A. P., Hanssen, L. L., de Sutter, P., Viville, S., Geraedts, J. P., & de Boer, P. (2012). Assisted reproduction treatment and epigenetic inheritance. Human Reproduction Update, 18, 171–197.PubMedPubMedCentralGoogle Scholar
  156. Ventura-Juncá, P., Irarrázaval, I., Rolle, A. J., Gutiérrez, J. I., Moreno, R. D., & Santos, M. J. (2015). In vitro fertilization (IVF) in mammals: epigenetic and developmental alterations. Scientific and bioethical implications for IVF in humans. Biological Research, 48, 68.PubMedPubMedCentralGoogle Scholar
  157. Walsh, C. A. (2015). Early 2nd trimester fetal demise in a monochorionic twinpregnancy: a cautionary tale. Australasian Journal of Ultrasound in Medicine, 18, 78–81.PubMedPubMedCentralGoogle Scholar
  158. Wang, L. Y., Wang, N., Le, F., Li, L., Li, L. J., Liu, X. Z., Zheng, Y. M., Lou, H. Y., Xu, X. R., Zhu, X. M., Zhu, Y. M., Huang, H. F., & Jin, F. (2013). Persistence and intergenerational transmission of differentially expressed genes in the testes of intracytoplasmic sperm injection conceived mice. Journal of Zheijang University Scienve B, 14, 372–381.Google Scholar
  159. WHO, Calverton, Maryland, USA: ORC Macro and the World Health Organization. (2004). World Health Organization. Infecundity, Infertility, and Childlessness in Developing Countries. DHS Comparative Reports No 9.Google Scholar
  160. Williams, K. E., & Zappert, L. N. (2006). Psychopathology and psychopharmacology in the infertile patient. In S. N. Covington & L. H. Burns (Eds.), Infertility counseling: a comprehensive handbook for clinicians (pp. 97–116). New York: Cambridge University Press.Google Scholar
  161. Williamson, K. E., & Jakobson, L. S. (2014). Social attribution skills of children born preterm at very low birth weight. Development and Psychopathology, 26, 889–900.PubMedGoogle Scholar
  162. Wolke, D. (1998). Psychological development of prematurely born children. Archives of Disease in Childhood, 78, 567–570.PubMedPubMedCentralGoogle Scholar
  163. Woodward, J. (1998). The lone twin: understanding twin bereavement and loss. London: Free Association Books.Google Scholar
  164. Zegers-Hochschild, F., Adamson, G. D., de Mouzon, J., Ishihara, O., Mansour, R., Nygren, K., Sullivan, E., Vanderpoel, S., & International Committee for Monitoring Assisted Reproductive Technology; World Health Organization. (2009). International Committee for Monitoring Assisted Reproductive Technology (ICMART) and the World Health Organization (WHO) revised glossary of ART terminology, 2009. Fertility and Sterility, 92, 1520–1524.PubMedGoogle Scholar
  165. Zhang, Y., Cui, Y., Zhou, Z., Sha, J., Li, Y., & Liu, J. (2010). Altered global gene expressions of human placentae subjected to assisted reproductive technology treatments. Placenta, 31, 251–258.PubMedGoogle Scholar
  166. Zhong, X., Liu, J., Cui, Q., Liang, S., Lin, Y., Liu, H., & Zeng, Q. (2017). Effect of parental physiological conditions and assisted reproductivetechnologies on the pregnancy and birth outcomes in infertile patients. Oncotarget, 8, 18409–18416.PubMedGoogle Scholar
  167. Zhou, L., Gao, X., Wu, Y., & Zhang, Z. (2016). Analysis of pregancy outcomes for survivors of the vanishingtwin syndrome after in vitro fertilization and embryo transfer. European Journal of Obstetrics, Gynecology, and Reproductive Biology, 203, 35–39.PubMedGoogle Scholar

Copyright information

© Neuroscientia 2018

Authors and Affiliations

  • H. Szőke
    • 1
  • István Bókkon
    • 2
    Email author
  • G. Kapócs
    • 3
    • 4
  • J. Vagedes
    • 5
    • 6
  • C. Saahs
    • 7
    • 8
    • 9
  • A. Mérey
    • 9
  • Z. Kovács
    • 9
  1. 1.Department of CAM, Faculty of Health SciencesUniversity of PécsPécsHungary
  2. 2.Psychosomatic Outpatient CenterBudapestHungary
  3. 3.Department of Psychiatry and Psychiatric RehabilitationSaint John HospitalBudapestHungary
  4. 4.Institute for Behavioral SciencesSemmelweis UniversityBudapestHungary
  5. 5.University of Tuebingen, Children’s HospitalTuebingenGermany
  6. 6.ARCIM InstituteFilderstadtGermany
  7. 7.University of ViennaViennaAustria
  8. 8.Pediatric Outpatient DepartmentKremsAustria
  9. 9.Doctorate School, Faculty of Health SciencesUniversity of PécsPécsHungary

Personalised recommendations