Advertisement

Activitas Nervosa Superior

, Volume 60, Issue 3–4, pp 86–89 | Cite as

Schizophrenia, Mental Disintegration, and Melatonin

  • Jakub SimekEmail author
Ideas and Perspectives
  • 19 Downloads

Abstract

Bleulerʼs concept of the splitting of the psychic functions in schizophrenia seems to be closely related to disturbances of neural binding related to perception, disorganized thoughts, and “blunted” or “flat” affects and suggests that disruptions of this coherent neural binding produce disintegration or splitting of consciousness. This abnormal integration of sensory input with stored information as a consequence of impaired neural circuits manifests as a failure of integrative brain functions. An important role in this process of the brain synchronization and integration likely plays temporal processes representing “internal clocks” which involve neurons localized in suprachiasmatic nuclei and also the pineal gland and other structures participating in neuroendocrine rhythmicity. The evidence also shows that melatonin is closely related to processes that contribute to memory formation, long-term potentiation, and synaptic plasticity mainly in the hippocampus and also in other brain regions. These findings also indicate that melatonin has very important and specific role in mechanisms of consciousness, in processes of memory consolidation, and also in their specific changes related to stress experiences which might be observed in various mental disorders. The growing evidence about these processes of temporal disorganization has been reported in schizophrenia which most likely may be understood in the modern conceptualization of schizophrenia that reminds its traditional conceptualization by Bleuler.

Keywords

Eugen Bleuler Schizophrenia Melatonin Binding Mental disintegration Splitting of consciousness 

Notes

Funding Information

This study was supported by Charles University Project SVV Progress.

Compliance with Ethical Standards

Conflict of Interest

The author declares that he has no conflict of interest.

References

  1. Andreasen, N. C., Nopoulos, P., O’Leary, D. S., Miller, D. D., Wassink, T., & Flaum, M. (1999). Defining the phenotype of schizophrenia: cognitive dysmetria and its neural mechanisms. Biological Psychiatry, 46, 908–920.CrossRefGoogle Scholar
  2. Arp, R. (2005). Selectivity, integration, and the psycho-neuro-biological continuum. Journal of Mind and Behavior, 26, 35–64.Google Scholar
  3. Barrera-Mera, B., & Barrera-Calva, E. (1998). The Cartesian clock metaphor for pineal gland operation pervades the origin of modern chronobiology. Neuroscience and Biobehavioral Reviews, 23, 1–4.CrossRefGoogle Scholar
  4. Baydas, G., Ozveren, F., Akdemir, I., Tuzcu, M., & Yasar, A. (2005). Learning and memory deficits in rats induced by chronic thinner exposure are reversed by melatonin. Journal of Pineal Research, 39, 50–56.CrossRefGoogle Scholar
  5. Binder, D. K., & Scharfman, H. E. (2004). Brain-derived neurotrophic factor. Growth Factors, 22, 123–131.CrossRefGoogle Scholar
  6. Bleuler, E. (1908). Die Prognose der Dementia praecox (Schizophreniegruppe). Allgemeine Zeitschrift für Psychiatrie und psychischgerichtliche Medizin, 65, 436–464.Google Scholar
  7. Boatright, J. H., Rubim, N. M., & Iuvone, P. M. (1994). Regulation of endogenous dopamine release in amphibian retina by melatonin: the role of GABA. Visual Neuroscience, 11, 1013–1018.CrossRefGoogle Scholar
  8. Bob, P. (2011). Brain, mind and consciousness: advances in neuroscience research. New York: Springer.CrossRefGoogle Scholar
  9. Bob, P., & Fedor-Freybergh, P. (2008). Melatonin, consciousness and traumatic stress. Journal of Pineal Research, 44, 341–347.CrossRefGoogle Scholar
  10. Calabrese, F., Molteni, R., Racagni, G., & Riva, M. A. (2009). Neuronal plasticity: a link between stress and mood disorders. Psychoneuroendocrinology, 34(Suppl 1), 208–216.CrossRefGoogle Scholar
  11. Chaudhury, D., Wang, L. M., & Colwell, C. S. (2005). Circadian regulation of hippocampal long-term potentiation. Journal of Biological Rhythms, 20, 225–236.CrossRefGoogle Scholar
  12. Descartes, R. (1975). The passions of the soul. In E. S. Haldane & G. R. T. Ross (Eds. & Trans), The philosophical works of Descartes (Vol. 1). London: Cambridge University Press.Google Scholar
  13. Engel, A. K., Roelfsema, P. R., Fries, P., Brecht, M., & Singer, W. (1997). Role of the temporal domain for response selection and perceptual binding. Cerebral Cortex, 7, 571–582.CrossRefGoogle Scholar
  14. Feinberg, I., & Guazzelli, M. (1999). Schizophrenia - a disorder of the corollary discharge systems that integrate the motor systems of thought with the sensory systems of consciousness. British Journal of Psychiatry, 17, 4196–4204.Google Scholar
  15. Fidelman, U. (2005). Visual search and quantum mechanics: a neuropsychological basis of Kant’s creative imagination. Journal of Mind and Behavior, 26, 23–33.Google Scholar
  16. Ford, J. M., Gray, M., Faustman, W. O., Heinks, T. H., & Mathalon, D. H. (2005). Reduced gamma-band coherence to distorted feedback during speech when what you say is not what you hear. International Journal of Psychophysiology, 57, 143–150.CrossRefGoogle Scholar
  17. Ford, J. M., Gray, M., Faustman, W., Roach, B., & Mathalon, D. (2007). Dissecting corollary discharge dysfunction in schizophrenia. Psychophysiolog, 44, 522–529.CrossRefGoogle Scholar
  18. Goldberg, T. E., & Weinberger, D. R. (2000). Thought disorder in schizophrenia: a reappraisal of older formulations and an overview of some recent studies. Cognitive Neuropsychiatry, 5, 1–19.CrossRefGoogle Scholar
  19. Gorfine, T., & Zisapel, N. (2007). Melatonin and the human hippocampus, a time-dependent interplay. Journal of Pineal Research, 43, 80–86.CrossRefGoogle Scholar
  20. Hamada, T., Antle, M. C., & Silver, R. (2004). Temporal and spatial expression patterns of canonical clock genes and clock-controlled genes in the suprachiasmatic nucleus. European Journal of Neuroscience, 19, 1741–1748.CrossRefGoogle Scholar
  21. Hemby, S. E., Trojanowski, J. Q., & Ginsberg, S. D. (2003). Neuron-specific age-related decreases in dopamine receptor subtype mRNAs. The Journal of Comparative Neurology, 456, 176–183.CrossRefGoogle Scholar
  22. Indic, P., Schwartz, W. J., Herzog, E. D., Foley, N. C., & Antle, M. C. (2007). Modeling the behavior of coupled cellular circadian oscillators in the suprachiasmatic nucleus. Journal of Biological Rhythms, 22, 211–219.CrossRefGoogle Scholar
  23. Jung, C. G. (1909). The psychology of dementia praecox. New York: Journal of Nervous and Mental Disease Publishing Company.CrossRefGoogle Scholar
  24. Kalsbeek, A., Palm, I. F., La Fleur, S. E., Scheer, F. A., Perreau-Lenz, S., Ruiter, M., Kreier, F., Cailotto, C., & Buijs, R. M. (2006). SCN outputs and the hypothalamic balance of life. Journal of Biological Rhythms, 21, 458–469.CrossRefGoogle Scholar
  25. Kent, G. H., & Rosonoff, A. J. (1910). A study of associations in insanity. American Journal of Insanity, 66/67(37–34), 317–390.Google Scholar
  26. Larson, J., Jessen, R. E., Uz, T., Arslan, A. D., Kurtuncu, M., Imbesi, M., & Manev, H. (2006). Impaired hippocampal long-term potentiation in melatonin MT2 receptor-deficient mice. Neuroscience Letters, 393, 23–26.CrossRefGoogle Scholar
  27. Laudon, M., Hyde, J. F., & Ben-Jonathan, N. (1989). Ontogeny of prolactin releasing and inhibiting activities in the posterior pituitary of male rats. Neuroendocrinology, 50, 644–649.CrossRefGoogle Scholar
  28. Le Van Quyen, M., Foucher, J., Lachaux, J.-P., Rodriguez, E., Lutz, A., Martinerie, J., & Varela, F. J. (2001). Comparison of Hilbert transform and wavelet methods for the analysis of neuronal synchrony. Journal of Neuroscience Methods, 111, 83–98.CrossRefGoogle Scholar
  29. Lee, K. H., Williams, L. M., Breakspear, M., & Gordon, E. (2003). Synchronous Gamma activity: a review and contribution to an integrative neuroscience model of schizophrenia. Brain Research Reviews, 41, 57–78.CrossRefGoogle Scholar
  30. Lynch, M. A. (2004). Long-term potentiation and memory. Physiological Reviews, 84, 87–136.CrossRefGoogle Scholar
  31. McCarley, R. W., Shenton, M. E., O’Donnell, B. F., & Nestor, P. G. (1993). Uniting Kraepelin and Bleuler: the psychology of schizophrenia and the biology of temporal lobe abnormalities. Harvard Review of Psychiatry, 1, 36–56.CrossRefGoogle Scholar
  32. Moran, L. J., Mefferd, R. B. N., & Kimble, J. P. N. (1964). Idiodynamic sets in word association. Psychological Monographs, 78, 1–22.CrossRefGoogle Scholar
  33. Nadel, L., & Jacobs, W. J. (1998). Traumatic memory is special. Current Directions in Psychological Science, 7, 154–157.CrossRefGoogle Scholar
  34. Ozcan, M., Yilmaz, B., & Carpenter, D. O. (2006). Effects of melatonin on synaptic transmission and long-term potentiation in two areas of mouse hippocampus. Brain Research, 1111, 90–94.CrossRefGoogle Scholar
  35. Pacchierotti, C., Iapichino, S., Bossini, L., Pieraccini, F., & Castrogiovanni, P. (2001). Melatonin in psychiatric disorders: a review on the melatonin involvement in psychiatry. Frontiers in Neuroendocrinology, 22, 18–32.CrossRefGoogle Scholar
  36. Savitz, J., Solms, M., & Ramesar, R. (2006). The molecular genetics of cognition: dopamine, COMT and BDNF. Genes, Brain and Behavior, 5, 311–328.CrossRefGoogle Scholar
  37. Shakow, D. (1980). Kent–Rosanoff association and its implications for segmental set theory. Schizophrenia Bulletin, 6, 676–685.CrossRefGoogle Scholar
  38. Singer, W. (1993). Synchronization of cortical activity and its putative role in information processing and learning. Annual Review of Physiology, 55, 349–374.CrossRefGoogle Scholar
  39. Singer, W. (2001). Consciousness and the binding problem. Annals of the New York Academy of Sciences, 929, 123–146.CrossRefGoogle Scholar
  40. Smith, C. U. M. (1998). Descartes’ pineal neuropsychology. Brain and Cognition, 36, 57–72.CrossRefGoogle Scholar
  41. Sporns, O., Tononi, G., & Edelman, G. M. (2000). Connectivity and complexity: the relationship between neuroanatomy and brain dynamics. Neural Networks, 13, 909–922.CrossRefGoogle Scholar
  42. Sullivan, R. M., & Gratton, A. (1999a). Lateralized effects of medial prefrontal cortex lesions on neuroendocrine and autonomic stress responses in rats. Journal of Neuroscience, 19, 2834–2840.CrossRefGoogle Scholar
  43. Sullivan, R. M., & Gratton, A. (1999b). Medial prefrontal cortex, laterality, and stress. Journal of Neuroscience, 19, 2834–2840.CrossRefGoogle Scholar
  44. Sullivan, R. M., & Gratton, A. (2002). Prefrontal cortical regulation of hypothalamic-pituitary adrenal function in the rat and implications for psychopathology: side matters. Psychoneuroendocrinology, 27, 99–114.CrossRefGoogle Scholar
  45. Thomas, K., & Davies, A. (2005). Neurotrophins: a ticket to ride for BDNF. Current Biology, 15, 262–264.CrossRefGoogle Scholar
  46. Velik, R. (2010). From single neuron-firing to consciousness-towards the true solution of the binding problem. Neuroscience and Biobehavioral Reviews, 34, 993–1001.CrossRefGoogle Scholar
  47. Von Der Malsburg, C. (1999). The what and why of binding: the modeler’s perspective. Neuron, 24, 95–104.CrossRefGoogle Scholar
  48. Woolf, N., & Hameroff, S. (2001). A quantum approach to visual consciousness. Trends in Cognitive Neuroscience, 5, 472–478.CrossRefGoogle Scholar

Copyright information

© Neuroscientia 2018

Authors and Affiliations

  1. 1.Center Neuropsychiatric Research of Traumatic Stress, Department of Psychiatry, First Faculty of MedicineCharles UniversityPragueCzech Republic

Personalised recommendations