Advertisement

Solving equations and optimization problems with uncertainty

  • Peter FranekEmail author
  • Marek Krčál
  • Hubert Wagner
Original Paper
  • 516 Downloads

Abstract

We study the problem of detecting zeros of continuous functions that are known only up to an error bound, extending the theoretical work of Franek and Krčál (J ACM 62(4):26:1–26:19, 2015) with explicit algorithms and experiments with an implementation (https://bitbucket.org/robsatteam/rob-sat). Further, we show how to use the algorithm for approximating worst-case optima in optimization problems in which the feasible domain is defined by the zero set of a function \(f\colon X\rightarrow {\mathbbm{R}}^n\) which is only known approximately. The algorithm first identifies a subdomain A where the function f is provably non-zero, a simplicial approximation \(f'\colon A\rightarrow S^{n-1}\) of f/|f|, and then verifies non-extendability of \(f'\) to X to certify a zero. Deciding extendability is based on computing the cohomological obstructions and their persistence. We describe an explicit algorithm for the primary and secondary obstruction, two stages of a sequence of algorithms with increasing complexity. Using elements and techniques of persistent homology, we quantify the persistence of these obstructions and hence of the robustness of zero. We provide experimental evidence that for random Gaussian fields, the primary obstruction—a much less computationally demanding test than the secondary obstruction—is typically sufficient for approximating robustness of zero.

Keywords

Computational homotopy theory Uncertainty Obstructions 

Mathematics Subject Classification

65H10 55S35 

Notes

Acknowledgements

We thank Robert Adler for the discussion on random Gaussian fields, and Eric Wofsey for his hints on math.stackexchange regarding the triviality of the cup products \(H^2(X,A)\times H^2(X,A)\rightarrow H^4(X,A)\) for contractible X (Wofsey 0000). Further, we thank both Institute of Computer Science of the Czech Academy of Sciences as well as IST Austria for providing computer power for our computational experiments.

Compliance with ethical standards

Funding

The research of Peter Franek received funding from Austrian Science Fund (FWF): M 1980 and from the Czech Science Foundation (GACR) Grant number 15-14484S with institutional support RVO:67985807. The research of Marek Krčál was supported by the Seventh Framework Programme (291734) and by the Avast fellowship.

References

  1. Adler, R.J.: The Geometry of Random Fields, vol. 62. SIAM, Philadelphia (1981)zbMATHGoogle Scholar
  2. Adler, R.J., Bobrowski, O., Borman, M.S., Subag, E., Weinberger, S.: Persistent homology for random fields and complexes (2010)Google Scholar
  3. Alefeld, G.E., Shen, Z.: Miranda’s theorem and the verification of solution of linear complementarity problems. Technical Report 01/05, Institut für Wissenschaftliches Rechnen und Mathematische Modellbildung (2001)Google Scholar
  4. Alefeld, G., Frommer, A., Heindl, G., Mayer, J.: On the existence theorems of Kantorovich, Miranda and Borsuk. Electron. Trans. Numer. Anal. 17, 102–111 (2004)MathSciNetzbMATHGoogle Scholar
  5. Allgower, E.L., Georg, K.: Introduction to Numerical Continuation Methods, vol. 45. SIAM, Philadelphia (2003)CrossRefzbMATHGoogle Scholar
  6. Aubry, C., Desmare, R., Jaulin, L.: Loop detection of mobile robots using interval analysis. Automatica 49(2), 463–470 (2013).  https://doi.org/10.1016/j.automatica.2012.11.009.MathSciNetCrossRefzbMATHGoogle Scholar
  7. Aubry, C., Desmare, R., Jaulin, L.: Kernel characterization of an interval function. Math. Comput. Sci. 8(3), 379–390 (2014).  https://doi.org/10.1007/s11786-014-0206-9 MathSciNetCrossRefzbMATHGoogle Scholar
  8. Bauer, U., Kerber, M., Reininghaus, J., Wagner, H.: Phat—persistent homology algorithms toolbox. In: Mathematical Software—ICMS 2014, pp. 137–143. Springer, Berlin (2014)Google Scholar
  9. Bendich, P., Edelsbrunner, H., Morozov, D., Patel, A.: The robustness of level sets. In: Berg, M., Meyer, U. (eds.) Algorithms—ESA 2010. Lecture Notes in Computer Science, vol. 6346, pp. 1–10. Springer, Berlin (2010).  https://doi.org/10.1007/978-3-642-15775-2_1
  10. Bendich, P., Edelsbrunner, H., Morozov, D., Patel, A.: Homology and robustness of level and interlevel sets. Homol. Homotopy Appl. 15(1), 51–72 (2013). http://projecteuclid.org/euclid.hha/1383943667
  11. Ben-Tal, A., Nemirovski, A.: Robust optimization—methodology and applications. Math. Program. 92(3), 453–480 (2002).  https://doi.org/10.1007/s101070100286 MathSciNetCrossRefzbMATHGoogle Scholar
  12. Ben-Tal, A., Ghaoui, L., Nemirovski, A.: Robust Optimization. Princeton Series in Applied Mathematics. Princeton University Press, Princeton (2009). http://books.google.cz/books?id=DttjR7IpjUEC
  13. Bertsimas, D., Brown, D.B., Caramanis, C.: Theory and applications of robust optimization. SIAM Rev. 53(3), 464–501 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  14. Beyer, H.G., Sendhoff, B.: Robust optimization—a comprehensive survey. Comput. Methods Appl. Mech. Eng. 196(33–34), 3190–3218 (2007).  https://doi.org/10.1016/j.cma.2007.03.003 MathSciNetCrossRefzbMATHGoogle Scholar
  15. Bredon, G.: Topology and Geometry. Graduate Texts in Mathematics, vol. 139. Springer, Berlin (1993)Google Scholar
  16. Buchmann, J., Squirrel, D.: Kernels of integer matrices via modular arithmetic. Technical report (1999). https://www.researchgate.net/publication/2611992_Kernels_of_Integer_Matrices_via_Modular_Arithmetic
  17. Čadek, M., Krčál, M., Matoušek, J., Vokřínek, L., Wagner, U.: Extendability of continuous maps is undecidable. Discret. Comput. Geom. 51(1), 24–66 (2013, to appear). Preprint. arXiv:1302.2370
  18. Čadek, M., Krčál, M., Matoušek, J., Sergeraert, F., Vokřínek, L., Wagner, U.: Computing all maps into a sphere. J. ACM 61(3), 17:1–17:44 (2014a).  https://doi.org/10.1145/2597629 MathSciNetzbMATHGoogle Scholar
  19. Čadek, M., Krčál, M., Matoušek, J., Vokřínek, L., Wagner, U.: Polynomial-time computation of homotopy groups and Postnikov systems in fixed dimension. SIAM J. Comput. 43(5), 1728–1780 (2014b)MathSciNetCrossRefzbMATHGoogle Scholar
  20. Chazal, F., Patel, A., Škraba, P.: Computing the robustness of roots. Appl. Math. Lett. 25(11), 1725—1728 (2012). http://ailab.ijs.si/primoz_skraba/papers/fp.pdf
  21. Chung, M.K., Bubenik, P., Kim, P.T.: Persistence diagrams of cortical surface data. In: Information Processing in Medical Imaging: 21st International Conference, IPMI 2009, Williamsburg, VA, USA, July 5–10, 2009. Proceedings, pp. 386–397. Springer, Berlin (2009).  https://doi.org/10.1007/978-3-642-02498-6_32
  22. Dian, J., Kearfott, R.B.: Existence verification for singular and nonsmooth zeros of real nonlinear systems. Math. Comput. 72(242), 757–766 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  23. Edelsbrunner, H., Letscher, D., Zomorodian, A.: Topological persistence and simplification. Discret. Comput. Geom. 28(4), 511–533 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  24. Eilenberg, S., Zilber, J.A.: On products of complexes. Am. J. Math. 200–204 (1953)Google Scholar
  25. Franek, P., Krčál, M.: On computability and triviality of well groups. In: Arge, L., Pach, J. (eds.) 31st International Symposium on Computational Geometry (SoCG 2015). Leibniz International Proceedings in Informatics (LIPIcs), vol. 34, pp. 842–856. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2015a).  https://doi.org/10.4230/LIPIcs.SOCG.2015.842
  26. Franek, P., Krčál, M.: Robust satisfiability of systems of equations. J. ACM 62(4), 26:1–26:19 (2015b).  https://doi.org/10.1145/2751524 MathSciNetCrossRefzbMATHGoogle Scholar
  27. Franek, P., Krčál, M.: Persistence of zero sets. Homol. Homotopy Appl. (2016, to appear). arXiv preprint. arXiv:1507.04310
  28. Franek, P., Ratschan, S.: Effective topological degree computation based on interval arithmetic. AMS Math. Comput. 84(293), 1265–1290 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  29. Franek, P., Ratschan, S., Zgliczynski, P.: Satisfiability of systems of equations of real analytic functions is quasi-decidable. In: Proceedings of the 36th International Symposium on Mathematical Foundations of Computer Science (MFCS). LNCS, vol. 6907, pp. 315–326. Springer, Berlin (2011)Google Scholar
  30. Franek, P., Ratschan, S., Zgliczynski, P.: Quasi-decidability of a fragment of the first-order theory of real numbers. J. Autom. Reason. 1–29 (2015).  https://doi.org/10.1007/s10817-015-9351-3
  31. Friedman, G.: An elementary illustrated introduction to simplicial sets. Rocky Mt. J. Math. 42(2), 353–423 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  32. Frommer, A., Lang, B.: Existence tests for solutions of nonlinear equations using Borsuk’s theorem. SIAM J. Numer. Anal. 43(3), 1348–1361 (2005).  https://doi.org/10.1137/S0036142903438148. http://link.aip.org/link/?SNA/43/1348/1
  33. Gao, M., Chen, C., Zhang, S., Qian, Z., Metaxas, D., Axel, L.: Segmenting the papillary muscles and the trabeculae from high resolution cardiac ct through restoration of topological handles. In: International Conference on Information Processing in Medical Imaging (IPMI) (2013)Google Scholar
  34. Goldsztejn, A., Jaulin, L.: Inner and outer approximations of existentially quantified equality constraints. In: Principles and practice of constraint programming-CP 2006, pp. 198–212 (2006)Google Scholar
  35. Goldsztejn, A., Jaulin, L.: Inner approximation of the range of vector-valued functions. Reliab. Comput. 1–23 (2010)Google Scholar
  36. Gonzalez-Diaz, R., Real, P.: Simplification techniques for maps in simplicial topology. J. Symb. Comput. 40(4), 1208–1224 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  37. Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2001). https://www.math.cornell.edu/~hatcher/AT/ATpage.html
  38. Jeannerod, C.P., Pernet, C., Storjohann, A.: Rank-profile revealing gaussian elimination and the cup matrix decomposition. J. Symb. Comput. 56, 46–68 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  39. Krčál, M., Pilarczyk, P.: Computation of Cubical Steenrod Squares, pp. 140–151. Springer International Publishing, Cham (2016).  https://doi.org/10.1007/978-3-319-39441-1_13 zbMATHGoogle Scholar
  40. Krčál, M., Matoušek, J., Sergeraert, F.: Polynomial-time homology for simplicial Eilenberg–MacLane spaces. J. Found. Comput. Math. 13, 935–963 (2013). Preprint. arXiv:1201.6222
  41. Lang, A., Potthoff, J.: Fast simulation of gaussian random fields. Monte Carlo Methods Appl. 17(3), 195–214 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  42. Maria, C., Boissonnat, J.D., Glisse, M., Yvinec, M.: The Gudhi library: simplicial complexes and persistent homology. In: Hong, H., Yap, C. (eds.) Mathematical Software—ICMS 2014. Lecture Notes in Computer Science, vol. 8592, pp. 167–174. Springer, Berlin (2014).  https://doi.org/10.1007/978-3-662-44199-2_28
  43. Merlet, J.P.: Interval analysis and reliability in robotics. Int. J. Reliab. Saf. 3(1–3), 104–130 (2009)CrossRefGoogle Scholar
  44. Prasolov, V.V.: Elements of Homology Theory. Graduate Studies in Mathematics. American Mathematical Society, Providence (2007)Google Scholar
  45. Rump, S.M.: Verification methods: rigorous results using floating-point arithmetic. Acta Numer. 19, 287–449 (2010).  https://doi.org/10.1017/S096249291000005X. http://journals.cambridge.org/article_S096249291000005X
  46. Steenrod, N.E.: Products of cocycles and extensions of mappings. Ann. Math. 48(2), 290–320 (1947)MathSciNetCrossRefzbMATHGoogle Scholar
  47. Steenrod, N.E.: Cohomology operations, and obstructions to extending continuous functions. Adv. Math. 8, 371–416 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  48. Storjohann, A.: A fast + practical + deterministic algorithm for triangularizing integer matrices (1996). http://e-collection.library.ethz.ch/eserv/eth:3348/eth-3348-01.pdf
  49. Storjohann, A.: The shifted number system for fast linear algebra on integer matrices. J. Complex. 21(4), 609–650 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  50. Vokřínek, L.: Decidability of the extension problem for maps into odd-dimensional spheres. ArXiv e-prints (2014)Google Scholar
  51. Wang, P.S.: The undecidability of the existence of zeros of real elementary functions. J. ACM 21(4), 586–589 (1974).  https://doi.org/10.1145/321850.321856 MathSciNetCrossRefzbMATHGoogle Scholar
  52. Wofsey, E.: Triviality of relative cup product \({H}^2({X},{A})\times {H}^2({X},{A})\rightarrow {H}^4({X},{A})\) for spaces embeddable to \({R}^4\). Math. Stack Exch. https://math.stackexchange.com/q/1612524 (version: 2017-04-13)

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  1. 1.IST AustriaKlosterneuburgAustria
  2. 2.Institute of Computer Science of the Czech Academy of SciencesPragueCzechia

Personalised recommendations