No Evidence for Enhancing Prospective Memory with Anodal Transcranial Direct Current Stimulation Across Dorsolateral Prefrontal Cortex

  • Derek M. Ellis
  • Gianne K. G. Veloria
  • Ciera R. Arnett
  • Anne E. Vogel
  • Margarida Pitães
  • Gene A. BrewerEmail author
Original Research


A standard finding in the event-based prospective memory literature is that focal cues are more often detected than nonfocal cues. The multiprocess view of prospective memory accounts for this result by suggesting that dorsolateral prefrontal cortex (DLPFC)-mediated executive processes are necessary for nonfocal cue detection while hippocampally mediated spontaneous retrieval processes support detection of focal cues. In agreement with the multiprocess view, previous studies have found that working memory capacity is predictive of prospective memory performance through detection of nonfocal cues, but nonpredictive for focal cues. Because the DLPFC is known to support working memory maintenance, we predicted that anodal transcranial direct current stimulation (tDCS) of the DLPFC would increase prospective memory cue detection for nonfocal cues when compared with a sham condition. Critically, we also expected an interaction between prospective memory cue type and stimulation such that anodal stimulation would not influence focal cue detection. Our results replicated the standard effect of improved focal compared with nonfocal cue detection. However, there was no significant effect between the sham and active tDCS conditions. Furthermore, we did not find the expected interaction between cue type and stimulation. Not only do our findings add onto the growing literature of tDCS experiments that failed to find stimulation effects to DLPFC, but it is also one of the first studies to incorporate prospective memory with tDCS.


Prospective memory Working memory tDCS Neural stimulation 



We would like to thank Amanda Mullen, Cameron Robins, Alexis Erdington, Thomas Poniatowski, Nowed Patwary, Molly Benkaim, and Peter Whitehead for assisting with data collection.

Compliance with Ethical Standards

This study was approved by the Human Research Institutional Review Board at Arizona State University.

Conflict of Interest

GAB was supported by a grant from the Laboratory for Analytical Sciences during the completion of this work.


  1. Ball, B. H., & Brewer, G. A. (2018). Proactive Control Processes in Event-Based prospective memory: evidence from intraindividual variability and ex-Gaussian analyses. Journal of Experimental Psychology: Learning, Memory, & Cognition, 44(5), 793.Google Scholar
  2. Basso, D., Ferrari, M., & Palladino, P. (2010). Prospective memory and working memory: asymmetrical effects during frontal lobe TMS stimulation. Neuropsychologia, 48(11), 3282–3290.CrossRefGoogle Scholar
  3. Bisiacchi, P. S., Cona, G., Schiff, S., & Basso, D. (2011). Modulation of a fronto-parietal network in event-based prospective memory: an rTMS study. Neuropsychologia, 49(8), 2225–2232.CrossRefGoogle Scholar
  4. Brewer, G. A. (2011). Analyzing Response Time Distributions: methodological and theoretical suggestions for prospective memory researchers. Zeitschrift Für Psychologie/Journal of Psychology, 219(2), 117–124.CrossRefGoogle Scholar
  5. Brewer, G. A., Knight, J. B., Marsh, R. L., & Unsworth, N. (2010). Individual differences in event-based prospective memory: evidence for multiple processes supporting cue detection. Memory & Cognition, 38(3), 304–311.CrossRefGoogle Scholar
  6. Brunoni, A. R., & Vanderhasselt, M. A. (2014). Working memory improvement with non-invasive brain stimulation of the dorsolateral prefrontal cortex: a systematic review and meta-analysis. Brain and cognition, 86, 1–9.CrossRefGoogle Scholar
  7. Burgess, P. W., Dumontheil, I., Gilbert, S. J., Okuda, J., Schölvinck, M. L., & Simons, J. S. (2007). On the role of rostral prefrontal cortex (area 10) in prospective memory. In Prospective Memory: Cognitive, Neuroscience, Developmental, and Applied Perspectives. Mahwah: Erlbaum.Google Scholar
  8. Cona, G., Scarpazza, C., Sartori, G., Moscovitch, M., & Bisiacchi, P. S. (2015). Neural bases of prospective memory: a meta-analysis and the “Attention to Delayed Intention”(AtoDI) model. Neuroscience & Biobehavioral Reviews, 52, 21–37.CrossRefGoogle Scholar
  9. Debarnot, U., Crépon, B., Orriols, E., Abram, M., Charron, S., Lion, S., et al. (2015). Intermittent theta burst stimulation over left BA10 enhances virtual reality-based prospective memory in healthy aged subjects. Neurobiology of Aging, 36(8), 2360–2369.CrossRefGoogle Scholar
  10. Einstein, G. O., & McDaniel, M. A. (1990). Normal aging and prospective memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 16(4), 717.PubMedGoogle Scholar
  11. Einstein, G. O., & McDaniel, M. A. (2005). Prospective memory: multiple retrieval processes. Current Directions in Psychological Science, 14(6), 286–290.CrossRefGoogle Scholar
  12. Einstein, G. O., McDaniel, M. A., Thomas, R., Mayfield, S., Shank, H., Morrisette, N., & Breneiser, J. (2005). Multiple processes in prospective memory retrieval: factors determining monitoring versus spontaneous retrieval. Journal of Experimental Psychology. General, 134(3), 327–342.CrossRefGoogle Scholar
  13. Fregni, F., Boggio, P. S., Nitsche, M., Bermpohl, F., Antal, A., Feredoes, E., et al. (2005). Anodal transcranial direct current stimulation of prefrontal cortex enhances working memory. Experimental Brain Research. Experimentelle Hirnforschung. Experimentation Cerebrale, 166(1), 23–30.CrossRefGoogle Scholar
  14. Gbadeyan, O., McMahon, K., Steinhauser, M., & Meinzer, M. (2016). Stimulation of dorsolateral prefrontal cortex enhances adaptive cognitive control: a high-definition transcranial direct current stimulation study. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 36(50), 12530–12536.CrossRefGoogle Scholar
  15. Hering, A., Kliegel, M., Rendell, P., Craik, F., & Rose, N. (2018). Prospective memory is a key predictor of functional independence in older adults. Journal of the International Neuropsychological Society: JINS, 1–6.Google Scholar
  16. Hill, A. T., Fitzgerald, P. B., & Hoy, K. E. (2016). Effects of anodal transcranial direct current stimulation on working memory: a systematic review and meta-analysis of findings from healthy and neuropsychiatric populations. Brain Stimulation: Basic, Translational, and Clinical Research in Neuromodulation, 9(2), 197–208.CrossRefGoogle Scholar
  17. Horvath, J. C., Forte, J. D., & Carter, O. (2015). Quantitative review finds no evidence of cognitive effects in healthy populations from single-session transcranial direct current stimulation (tDCS). Brain Stimulation, 8(3), 535–550.CrossRefGoogle Scholar
  18. JASP Team. (2018). JASP Version 0.9.1.Google Scholar
  19. Kliegel, M., Jäger, T., & Phillips, L. H. (2008). Adult age differences in event-based prospective memory: a meta-analysis on the role of focal versus nonfocal cues.Google Scholar
  20. Kliegel, M., Altgassen, M., Hering, A., & Rose, N. S. (2011). A process-model based approach to prospective memory impairment in Parkinson’s disease. Neuropsychologia, 49(8), 2166–2177.CrossRefGoogle Scholar
  21. Mulquiney, P. G., Hoy, K. E., Daskalakis, Z. J., & Fitzgerald, P. B. (2011). Improving working memory: exploring the effect of transcranial random noise stimulation and transcranial direct current stimulation on the dorsolateral prefrontal cortex. Clinical Neurophysiology: Official Journal of the International Federation of Clinical Neurophysiology, 122(12), 2384–2389.CrossRefGoogle Scholar
  22. Nelson, J. T., McKinley, R. A., Golob, E. J., Warm, J. S., & Parasuraman, R. (2014). Enhancing vigilance in operators with prefrontal cortex transcranial direct current stimulation (tDCS). NeuroImage, 85, 900–917.CrossRefGoogle Scholar
  23. Nelson, J. T., McKinley, R. A., Phillips, C., McIntire, L., Goodyear, C., Kreiner, A., & Monforton, L. (2016). The effects of transcranial direct current stimulation (tDCS) on multitasking throughput capacity. Frontiers in Human Neuroscience, 10.Google Scholar
  24. Nilsson, J., Lebedev, A. V., Rydström, A., & Lövdén, M. (2017). Direct-current stimulation does little to improve the outcome of working memory training in older adults. Psychological Science, 28(7), 907–920.Google Scholar
  25. Paulus, W. (2003). Chapter 26 Transcranial direct current stimulation (tDCS). In Transcranial Magnetic Stimulation and Transcranial Direct Current Stimulation, Proceedings of the 2nd International Transcranial Magnetic Stimulation (TMS) and Transcranial Direct Current Stimulation (tDCS) Symposium (Vol. 56, pp. 249–254). Amsterdam: Elsevier.CrossRefGoogle Scholar
  26. Rendell, P. G., & Craik, F. (2000). Virtual week and actual week: age-related differences in prospective memory. Applied Cognitive Psychology, 14, S43–S62.CrossRefGoogle Scholar
  27. Robison, M. K., McGuirk, W. P., & Unsworth, N. (2017). No evidence for enhancements to visual working memory with transcranial direct current stimulation to prefrontal or posterior parietal cortices. Behavioral neuroscience, 131(4), 277.CrossRefGoogle Scholar
  28. Rose, N. S., Rendell, P. G., McDaniel, M. A., Aberle, I., & Kliegel, M. (2010). Age and individual differences in prospective memory during a “Virtual Week”: the roles of working memory, vigilance, task regularity, and cue focality. Psychology and Aging, 25(3), 595–605 10.1037/a0019771.CrossRefGoogle Scholar
  29. Rose, N. S., Thomson, H., Kliegel, M., & Rendell, P. G. (in press). Practice is more effective than transcranial direct-current stimulation for boosting prospective memory in healthy young and older adults. Journal of Cognitive Enhancement. Google Scholar
  30. Rouder, J. N., Morey, R. D., Verhagen, J., Swagman, A. R., & Wagenmakers, E. J. (2017). Bayesian analysis of factorial designs. Psychological Methods, 22(2), 304.CrossRefGoogle Scholar
  31. Rummel, J., Smeekens, B. A., & Kane, M. J. (2017). Dealing with prospective memory demands while performing an ongoing task: shared processing, increased on-task focus, or both? Journal of Experimental Psychology: Learning, Memory, and Cognition, 43(7), 1047.PubMedGoogle Scholar
  32. Stagg, C. J., Antal, A., & Nitsche, M. A. (2018). Physiology of transcranial direct current stimulation. The journal of ECT, 34(3), 144–152.PubMedGoogle Scholar
  33. Strickland, L., Loft, S., Remington, R. W., & Heathcote, A. (2018). Racing to remember: a theory of decision control in event-based prospective memory. Psychological Review, 21, 03.Google Scholar
  34. Talsma, L. J., Kroese, H. A., & Slagter, H. A. (2017). Boosting cognition: effects of multiple-session transcranial direct current stimulation on working memory. Journal of Cognitive Neuroscience, 29(4), 755–768.CrossRefGoogle Scholar
  35. Unsworth, N., Brewer, G. A., & Spillers, G. J. (2012). Variation in cognitive failures: an individual differences investigation of everyday attention and memory failures. Journal of Memory and Language, 67(1), 1–16.CrossRefGoogle Scholar
  36. Vöröslakos, M., Takeuchi, Y., Brinyiczki, K., Zombori, T., Oliva, A., Fernández-Ruiz, A., et al. (2018). Direct effects of transcranial electric stimulation on brain circuits in rats and humans. Nature communications, 9(1), 483.CrossRefGoogle Scholar
  37. Woods, A. J., Antal, A., Bikson, M., Boggio, P. S., Brunoni, A. R., Celnik, P., et al. (2016). A technical guide to tDCS, and related non-invasive brain stimulation tools. Clinical Neurophysiology: Official Journal of the International Federation of Clinical Neurophysiology, 127(2), 1031–1048.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Derek M. Ellis
    • 1
  • Gianne K. G. Veloria
    • 1
  • Ciera R. Arnett
    • 1
  • Anne E. Vogel
    • 1
  • Margarida Pitães
    • 1
  • Gene A. Brewer
    • 1
    Email author
  1. 1.Department of PsychologyArizona State UniversityTempeUSA

Personalised recommendations