Increasing Dopamine and Acetylcholine Levels during Encoding Does Not Modulate Remember or Know Responses during Memory Retrieval in Healthy Aging—a Randomized Controlled Feasibility Study

  • Anne K. Vellage
  • Patrick MüllerEmail author
  • Alina Graf
  • Nico Bunzeck
  • Notger G. Müller
Original Research


The retrieval of information from long-term memory can be associated with information regarding sources or context (recollection) or without further context (familiarity). The retrieval type depends on how information has been encoded previously, and this encoding process is supposed to be modulated by the neurotransmitters dopamine and acetylcholine. For example, acetylcholine levels in the hippocampus increase when one is confronted with novel information allowing for better encoding and, presumably, for retrieval of more detailed memories (recollection). On the other hand, a dopaminergic deficit such as in Parkinson’s disease has been shown to induce deficits in familiarity rather than in recollection-based retrieval. It is, however, unclear whether this finding arises from alterations in encoding, retrieval, or both. Moreover, other research has challenged this clear-cut dichotomy and linked dopamine to both familiarity and recollection, and acetylcholine to unspecific enhancement of memory for novel information. Thirty-nine healthy seniors (age range 62–77) participated in a remember/know task in which scenes that were presented with different repetition rates had to be encoded and retrieved on the following day. Neurotransmitter levels were modulated during encoding by administrating either levodopa (100 mg, N = 13) or galantamine (8 mg, N = 13) to one of two experimental groups. A third group received a placebo (N = 13). Across all groups, recognition memory increased as a function of stimulus repetition, and this effect was specifically pronounced for remember relative to know answers. Importantly, the drugs had no effect on recollection, familiarity, or overall recognition memory. The findings argue against a simple dichotomy of dopaminergic and cholinergic contributions to either recollection- or familiarity-based memory retrieval.


Recognition memory Dopamine Acetylcholine Aging Retrieval 



This work was supported by the DFG (Deutsche Forschungsgesellschaft) grant Mu1364/4-1 and Mu1364/4-2 to Prof. Dr. Müller. We thank Freya-Sophie Lenz for helping with the assessment of data.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. Bäckman, L., Nyberg, L., Lindenberger, U., Li, S.-C., & Farde, L. (2006). The correlative triad among aging, dopamine, and cognition: Current status and future prospects. Neuroscience & Biobehavioral Reviews, 30(6), 791–807.Google Scholar
  2. Barnes, L., Boubert, L., Harris, J., Lee, A., & David, A. S. (2003). Reality monitoring and visual hallucinations in Parkinson’s disease. Neuropsychologia, 41(5), 565–574.Google Scholar
  3. Blatt, J., Vellage, A.-K., Baier, B., & Müller, N. (2014). The contribution of acetylcholine and dopamine to subprocesses of visual working memory—what patients with amnestic mild cognitive impairment and Parkinson’s disease can tell us. Neuropsychologia, 61, 89–95.Google Scholar
  4. Bloemendaal, M., Froböse, M. I., Wegman, J., Zandbelt, B., van de Rest, O., Cools, R., & Aarts, E. (2018). Neuro-cognitve effects of tyrosine administration on reactive and proactive response inhibition in healthy older adults. eNeuro., 5(2), ENEURO.0035-17.2018. Scholar
  5. Bunzeck, N., Guitart-Masip, M., Dolan, R. J., & Duzel, E. (2014). Pharmacological dissociation of novelty responses in the human brain. Cerebral Cortex, 24(5), 1351–1360 Bhs420.Google Scholar
  6. Chowdhury, R., Guitart-Masip, M., Bunzeck, N., Dolan, R. J., & Düzel, E. (2012). Dopamine modulates episodic memory persistence in old age. Journal of Neuroscience, 32(41), 14193–14204.Google Scholar
  7. Cools, R., & D'Esposito, M. (2011). Inverted-U-shaped dopamine actions on human working memory and cognitive control. Biological Psychiatry, 69(12), 113–125.Google Scholar
  8. Davidson, P. S. R., Anaki, D., Saint-Cyr, J. A., Chow, T. W., & Moscovitch, M. (2006). Exploring the recognition memory deficit in Parkinson’s disease: Estimates of recollection versus familiarity. Brain, 129, 1786–1779.Google Scholar
  9. Dewhurst, S. A., & Anderson, S. J. (1999). Effects of exact and category repetition in true and false recognition memory. Memory and Cognition, 27(4), 664–673.Google Scholar
  10. DGN. (2016). S3-Leitlinie Idiopathisches Parkinson-Syndrom: Springer. Heidelberg: Berlin.Google Scholar
  11. DGPPN & DGN. (2017). S3-Leitlinie Demenzen. Berlin, Heidelberg: Springer Berlin Heidelberg.Google Scholar
  12. Dumas, J. A., & Newhouse, P. A. (2011). The cholinergic hypothesis of cognitive aging revisited again: Cholinergic functional compensation. Pharmacology Biochemistry and Behavior, 99(2), 254–261.Google Scholar
  13. Dunn, J. C. (1996). Remember-know: A matter of confidence. Psychological Review, 111(2), 524.Google Scholar
  14. Eckart, C., Woźniak-Kwaśniewska, A., Herweg, N. A., Fuentenmilla, L., & Bunzeck, N. (2016). Acetylcholine modulates human working memory and subsequent familiarity based recognition via alpha oscillations. Neuroimage, 137, 61–69.Google Scholar
  15. Edelstyn, N. M., Mayes, A. E., Condon, L., Tunnicliffe, M., & Ellis, S. J. (2007). Recognition, recollection, familiarity and executive function in medicated patients with moderate Parkinson’s disease. Journal of Neuropsychology, 1(2), 131–147.Google Scholar
  16. Edelstyn, N. M., Shepherd, T. A., Mayes, A. R., Sherman, S. M., & Ellis, S. J. (2010). Effect of disease severity and dopaminergic medication on recollection and familiarity in patients with idiopathic nondementing Parkinson’s. Neuropsychologia, 48(5), 1367–1375.Google Scholar
  17. Edelstyn, N. M., John, C. M., Shepherd, T. A., Drakeford, J. L., Clark-Carter, D., Ellis, S. M., & Mayes, A. R. (2015). Evidence of an amnesia-like cued-recall memory impairment in nondementing idiopathic Parkinson’s disease. Cortex, 71, 85–101.Google Scholar
  18. Eichenbaum, H. E., & Cohen, N. J. (2001). From Conditioning to Conscious Recollection: Memory Systems of the Brain (Colume 35). Oxford: University Press.Google Scholar
  19. Eichenbaum, H. E., Yonelinas, A. R., & Ranganath, C. (2007). The medial temporal loba and recognition memory. Annual Review of Neuroscience, 30, 123–152.Google Scholar
  20. Froeliger, B., Gilbert, D. G., & McClernon, F. J. (2009). Effects of nicotine on novelty detection and memory recognition performance: Double-blind, placebo-controlled studies of smokers and non-smokers. Psychopharmacology, 205(4), 625–633.Google Scholar
  21. Gasbarri, A., Packard, M. G., Campana, E., & Pacitti, C. (1994). Anterograde and retrograde tracing of projections from the ventral tegmental area to the hippocampal formation in the rat. Brain Research Bulletin, 33(4), 445–452.Google Scholar
  22. Hasselmo, M. E. (2006). The role of acetylcholine in learning and memory. Current Opinion in Neurobiology, 16(6), 710–715.Google Scholar
  23. Heathcote, A., Frances, R., & Dunn, J. (2006). Recollection and familiarity in recognition memory: Evidence from ROC curves. Journal of Memory and Language, 55(4), 495–514.Google Scholar
  24. Karrer, T. M., Josef, A. K., Mata, R., Morris, E. D., & Samanez-Larkin, G. R. (2017). Reduced dopamine receptors and transporters but not synthesis capacity in normal aging adults: A meta-analysis. Neurobiology of Aging, 57, 36–46.Google Scholar
  25. Knecht, S., Breitenstein, C., Bushuven, S., Wailke, S., Kamping, S., Flöel, A., Zwitserlood, P., & Ringelstein, E. B. (2004). Levodopa: Faster and better word learning in normal humans. Annals of Neurology, 56(1), 20–26.Google Scholar
  26. Koen, J. D., & Yonelinas, A. P. (2014). The effects of healthy aging, amnestic mild cognitive impairment, and Alzheimer’s disease on recollection and familiarity: A meta-analytic review. Neuropsychology Review, 24(3), 332–354.Google Scholar
  27. Li, S.-C., Lindenberger, U., & Bäckman, L. (2010). Dopaminergic modulation of cognition across the life span. Neuroscience & Biobehavioral Reviews, 34(5), 625–630.Google Scholar
  28. Libby, L. A., Yonelinas, A. P., Ranganath, C., & Ragland, J. D. (2013). Recollection and familiarity in schizophrenia: A quantitative review. Biological Psychiatry, 73(10), 944–950.Google Scholar
  29. Mäntylä, T. (1993). Knowing but not remembering: Adult age differences in recollective experience. Memory & Cognition, 21(3), 379–388.Google Scholar
  30. Mesulam, M.-M. (2004). The cholinergic innervation of the human cerebral cortex. Progress in Brain Research, 145, 67–78.Google Scholar
  31. Monte-Silva, K., Kuo, M.-F., Thirugnanasambandam, N., Liebetanz, D., Paulus, W., & Mitsche, M. A. (2009). Dose-dependent inverted U-shaped effects of dopamine (D2-like) receptor activation on focal and nonfocal plasticity in humans. The Journal of Neuroscience, 29(19), 6124–6131.Google Scholar
  32. Morcom, A. M., Bullmore, E. T., Huppert, F. A., Lennox, B., Praseedom, A., Linnington, H., & Fletcher, P. C. (2010). Memory encoding and dopamine in the aging brain: A psychopharmacological neuroimaging study. Cerebral Cortex, 20(3), 743–757.Google Scholar
  33. Naveh-Benjamin, M. (2000). Adult age differences in memory performance: Tests of an associative deficit hypothesis. Journal of Experimental Psychology: Learning, Memory, and Cognition, 26(5), 1170–1187.Google Scholar
  34. Paller, K. A., & Wagner, A. D. (2002). Observing the transformation of experience into memory. Trends in Cognitive Science, 6(2), 93–102.Google Scholar
  35. Parkin, A. J., Gardiner, J. M., & Rosser, R. (1995). Functional aspects of recollective experience in face recognition. Consciousness and Cognition, 4(4), 387–398.Google Scholar
  36. Perfect, T., & Dasgupta, Z. R. R. (1997). What underlies the deficit in reported recollective experience in old age? Memory & Cognition, 25(6), 849–858.Google Scholar
  37. Pitarque, A., Sales, A., Meléndez, J. C., & Algarabel, S. (2015). Repetition increases false recollection in older people. Scandinavian Journal of Psychology, 56(1), 28–44.Google Scholar
  38. Samson, Y., Wu, J. J., Friedmann, A. H., & Davis, J. N. (1990). Catecholaminergic innervation of the hippocampus in the cynomolgus monkey. Journal of Comparative Neurology, 298(2), 250–263.Google Scholar
  39. Shepherd, T. A., Edelstyn, N. M., Mayes, A. R., & Ellis, S. J. (2013). Second-generation dopamine agonists and recollection impairments in Parkinson’s disease. Journal of Neuropsychology, 7(2), 284–305.Google Scholar
  40. Störmer, V. S., Passow, S., Biesenack, J., & Li, S.-C. (2012). Dopaminergic and cholinergic modulations of visual-spatial attention and working memory: Insights from molecular genetic research and implications for adult cognitive development. Developmental Psychology, 48(3), 875–889.Google Scholar
  41. Tulving, E., & Markowitsch, H. J. (1998). Episodic and declarative memory: Role of the hippocampus. Hippocampus, 8(3), 198–204.Google Scholar
  42. Tulving, E., & Thomson, D. M. (1973). Encoding specifity and retrieval processes in episodic memory. Psychological Review, 80(5), 352–373.Google Scholar
  43. Welsh, K. A., Butters, N., Mohs, R. C., et al. (1994). The consortium to establish a registry for Alzheimer’s disease (CERAD). Part V. a normative study of the neuropsychological battery. Neurology, 44(4), 609–614.Google Scholar
  44. Wixted, J. T., & Mickes, L. (2010). A continuous dual-process model of remember/know judgments. Psychological Review, 117(4), 1025–1054.Google Scholar
  45. Yesavage, J. A., Brink, T. L., Rose, T. L., Lum, O., Huang, V., Adey, M., & Leirer, O. (1983). Development and validation of a geriatric depression screening scale: A preliminary report. Journal of Psychiatric Research, 17(1), 37–49.Google Scholar
  46. Yonelinas, A. P. (2002). The nature of recollection and familiarity: A review of 30 years of research. Journal of Memory and Language, 46(3), 441–517.Google Scholar
  47. Yonelinas, A. P., & Jacoby, L. L. (2012). The process-dissociation approach two decades later: Convergence, boundary conditions, and new directions. Memory and Cognition, 40(5), 663–680.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Anne K. Vellage
    • 1
  • Patrick Müller
    • 1
    Email author
  • Alina Graf
    • 1
  • Nico Bunzeck
    • 2
    • 3
  • Notger G. Müller
    • 1
    • 4
    • 5
  1. 1.Neuroprotection Group, German Centre of Neurodegenerative Diseases (DZNE)MagdeburgGermany
  2. 2.Institute of PsychologyUniversity of LübeckLübeckGermany
  3. 3.Department of Systems NeuroscienceUniversity Medical Center Hamburg-EppendorfHamburgGermany
  4. 4.Department of NeurologyOtto-von-Guericke UniversityMagdeburgGermany
  5. 5.Center for Behavioral Brain Sciences (CBBS)MagdeburgGermany

Personalised recommendations