Advertisement

Journal of Cognitive Enhancement

, Volume 2, Issue 4, pp 335–347 | Cite as

How Brain Stimulation Techniques Can Affect Moral and Social Behaviour

  • C. Di Nuzzo
  • R. Ferrucci
  • E. Gianoli
  • M. Reitano
  • D. Tedino
  • F. Ruggiero
  • Alberto PrioriEmail author
Original Article

Abstract

Brain stimulation techniques, such as transcranial direct current stimulation (tDCS), transcranial magnetic stimulation (TMS), and deep brain stimulation (DBS) are used to treat psychiatric and neurological diseases. It elicits physical, cognitive, and mood benefits by promoting neuroplasticity. However, at the same time, several studies showed that these techniques could also alter moral judgment and social behaviour, leading to aggressive and prosocial behaviour; thus, there arises an ethical consideration about their effects and usability. Morality has been debated over centuries as the social behaviour regulator in our society. It is required for cognitive executive functions, problem solving, consequence anticipation, conflict management, and emotional evaluation. From an anatomical point of view, in addition to its philosophical and psychological complexity, we know that morality involves different brain areas and neural circuits both cortical and subcortical. In this mini-review, we report a number of recent results related to the use of brain stimulation techniques for modulating moral and social behaviour in human beings.

Keywords

Morality Brain stimulation tDCS TMS DBS Moral brain Moral behaviour Social behaviour Neurostimulation 

Abbreviations

A tDCS

anodal tDCS

A TMS

active TMS

AON

action observation network

AQ

Aggression Questionnaire

C tDCS

cathodal tDCS

CIT

concealed information detection test

cTBS

continuous theta burst stimulation

DBS

deep brain stimulation

DG

dictator game

DGp

dictator game with punishment option

DLPFC

dorsolateral prefrontal cortex

DRE

drug-resistant epilepsy

ECG

echocardiogram

EEG

electroencephalogram

EMG

electromyography

FAD

faked-action-discrimination tasks

fMRI

functional magnetic resonance imaging

GKT

guilty knowledge task

GnGT

go no go task

Hz

Hertz

IAB

intractable aggressive behaviour

IED

intermittent explosive disease

IFC

inferior frontal cortex

IQ

intelligence quotient

IRI

Interpersonal Reactivity Index

L.

left

M1

primary motor cortex

mA

milliampere

MADRS

Montgomery-Åsberg Depression Rating Scale

MEPs

motor evoked potentials

Min

minutes

Mm

millimeters

MMSE

Mini Mental State Examination

MOAS

Modified Overt Aggression Scale

MoCA

Montreal Cognitive Assessment

mPFC

medial prefrontal cortex

NIBS

non-invasive brain stimulation

OAS

Overt Aggression Scale

OFC

orbitofrontal cortex

PD

Parkinson’s disease

PFC

prefrontal cortex

PMH

posteromedial hypothalamus

PPI

Psychopatic Personality Inventory

R.

right

RPQ

Reactive Proactive Aggression Questionnaire

RT

reaction times

rTMS

repetitive transcranial magnetic stimulation

S tDCS

sham tDCS

SCR

skin conductance response

SDS-17

Social Desirability Scale-17

SI

primary somatosensory cortex

SOP

social orientation paradigm

STN

subthalamic circuit

tACS

transcranial alternating current stimulation

TAP

Tayor Aggression Paradigm

TCI

transcallosal inhibition

tDCS

transcranial current direct stimulation

TG

trust game

TMS

transcranial magnetic stimulation

ToM

theory of mind

TPJ

temporoparietal junction

UG

ultimatum game

VAMS

Visual Analog Mood Scale

VAS

Visual Analogue Scales

VAT

vision attention task

VLPFC

ventrolateral prefrontal cortex

Notes

Funding Information

The study was partly supported by POR-FESR 2014-2020 (ID247367), by donation in memory of Aldo Ravelli, by the Italian Ministry of Health grant (RC-2017 and GR-2011- 02352807), and Roche Research grant 2017.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that there is no conflict of interest.

References

  1. Balconi, M., & Canavesio, Y. (2014). High-frequency rTMS on DLPFC increases prosocial attitude in case of decision to support people. Social Neuroscience, 9(1), 82–93.CrossRefPubMedGoogle Scholar
  2. Baumgartner, T., Schiller, B., Rieskamp, J., Gianotti, L. R., & Knoch, D. (2013). Diminishing parochialism in intergroup conflict by disrupting the right temporo-parietal junction. Social Cognitive and Affective Neuroscience, 9(5), 653–660.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bechara, A., & Damasio, A. R. (2005). The somatic marker hypothesis: A neural theory of economic decision. Games and Economic Behavior, 52(2), 336–372.CrossRefGoogle Scholar
  4. Benedetti-Isaac, J. C., Torres-Zambrano, M., Vargas-Toscano, A., Perea-Castro, E., Alcalá-Cerra, G., Furlanetti, L. L., et al. (2015). Seizure frequency reduction after posteromedial hypothalamus deep brain stimulation in drug-resistant epilepsy associated with intractable aggressive behavior. Epilepsia, 56(7), 1152–1161.CrossRefPubMedGoogle Scholar
  5. Buckholtz, J. W., Martin, J. W., Treadway, M. T., Jan, K., Zald, D. H., Jones, O., & Marois, R. (2015). From blame to punishment: Disrupting prefrontal cortex activity reveals norm enforcement mechanisms. Neuron, 87(6), 1369–1380.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Choy, O., Raine, A., & Hamilton, R. H. (2018). Stimulation of the prefrontal cortex reduces intentions to commit aggression: A randomized, double-blind, placebo-controlled, stratified, parallel-group trial. Journal of Neuroscience, 3317–3317.Google Scholar
  7. Cyron, D. (2016). Mental side effects of deep brain stimulation (DBS) for movement disorders: the futility of denial. Frontiers in Integrative Neuroscience, 10, 17.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Coll, M. P., Tremblay, M. P. B., & Jackson, P. L. (2017). The effect of tDCS over the right temporo-parietal junction on pain empathy. Neuropsychologia, 100, 110–119.CrossRefPubMedGoogle Scholar
  9. Damasio, A. R. (2000). A neural basis for sociopathy. Archives of General Psychiatry, 57(2), 128–129.CrossRefGoogle Scholar
  10. Dambacher, F., Schuhmann, T., Lobbestael, J., Arntz, A., Brugman, S., & Sack, A. T. (2015a). No effects of bilateral tDCS over inferior frontal gyrus on response inhibition and aggression. PLoS One, 10(7), e0132170.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Dambacher, F., Schuhmann, T., Lobbestael, J., Arntz, A., Brugman, S., & Sack, A. T. (2015b). Reducing proactive aggression through non-invasive brain stimulation. Social Cognitive and Affective Neuroscience, 10(10), 1303–1309.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Darby, R. R., & Pascual-Leone, A. (2017). Moral enhancement using non-invasive brain stimulation. Frontiers in Human Neuroscience, 11, 77.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Decety, J., Michalska, K. J., & Kinzler, K. D. (2011). The contribution of emotion and cognition to moral sensitivity: A neurodevelopmental study. Cerebral Cortex, 22(1), 209–220.CrossRefPubMedGoogle Scholar
  14. Fecteau, S., Pascual-Leone, A., & Théoret, H. (2008). Psychopathy and the mirror neuron system: Preliminary findings from a non-psychiatric sample. Psychiatry Research, 160(2), 137–144.CrossRefPubMedGoogle Scholar
  15. Franzini, A., Broggi, G., Cordella, R., Dones, I., & Messina, G. (2013). Deep-brain stimulation for aggressive and disruptive behavior. World Neurosurgery, 80(3–4), S29–e11.PubMedGoogle Scholar
  16. Fumagalli, M., & Priori, A. (2012). Functional and clinical neuroanatomy of morality. Brain, 135(7), 2006–2021.CrossRefPubMedGoogle Scholar
  17. Fumagalli, M., Giannicola, G., Rosa, M., Marceglia, S., Lucchiari, C., Mrakic-Sposta, S., et al. (2011). Conflict-dependent dynamic of subthalamic nucleus oscillations during moral decisions. Social Neuroscience, 6(3), 243–256.CrossRefPubMedGoogle Scholar
  18. Fumagalli, M., Marceglia, S., Cogiamanian, F., Ardolino, G., Picascia, M., Barbieri, S., et al. (2015). Ethical safety of deep brain stimulation: A study on moral decision-making in Parkinson’s disease. Parkinsonism & Related Disorders, 21(7), 709–716.CrossRefGoogle Scholar
  19. Gallo, S., Paracampo, R., Müller-Pinzler, L., Severo, M. C., Blömer, L., Fernandes-Henriques, C., et al. (2018). The causal role of the somatosensory cortex in prosocial behaviour. eLife, 7, e32740.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Giordano, F., Cavallo, M., Spacca, B., Pallanti, S., Tomaiuolo, F., Pieraccini, F., ... & Sestini, S. (2016). Deep brain stimulation of the anterior limb of the internal capsule may be efficacious for explosive aggressive behaviour. Stereotactic and Functional Neurosurgery, 94(6), 371–378.Google Scholar
  21. Greene, J. D., Somemrville, R. B., Nystrom, L. E., Darley, J., M., & Cohen, J. D. (2001). An fMRI investigation of emotional engagment in moral judgment. Science, 293, 2105–2108.Google Scholar
  22. Greene, J. D., Nystrom, L. E., Engell, A. D., Darley, J. M., & Cohen, J. D. (2004). The neural bases of cognitive conflict and control in moral judgment. Neuron, 44(2), 389–400.CrossRefPubMedGoogle Scholar
  23. Harenski, C. L., & Hamann, S. (2006). Neural correlates of regulating negative emotions related to moral violations. Neuroimage, 30, 313–324.Google Scholar
  24. Harlow, J. M. (1848). Passage of an iron rod through the head. The Boston Medical and Surgical Journal (1828–1851), 39(20), 0–1.Google Scholar
  25. Harris, J. (2011). Moral enhancement and freedom. Bioethics, 25(2), 102–111.CrossRefPubMedGoogle Scholar
  26. Hofman, D., & Schutter, D. J. (2009). Inside the wire: Aggression and functional interhemispheric connectivity in the human brain. Psychophysiology, 46(5), 1054–1058.CrossRefPubMedGoogle Scholar
  27. Hortensius, R., Schutter, D. J., & Harmon-Jones, E. (2011). When anger leads to aggression: Induction of relative left frontal cortical activity with transcranial direct current stimulation increases the anger–aggression relationship. Social Cognitive and Affective Neuroscience, 7(3), 342–347.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Jeurissen, D., Sack, A. T., Roebroeck, A., Russ, B. E., & Pascual-Leone, A. (2014). TMS affects moral judgment, showing the role of DLPFC and TPJ in cognitive and emotional processing. Frontiers in Neuroscience, 8, 18.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Kuehne, M., Heimrath, K., Heinze, H. J., & Zaehle, T. (2015). Transcranial direct current stimulation of the left dorsolateral prefrontal cortex shifts preference of moral judgments. PLoS One, 10(5), e0127061.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Lilleeng, B., & Dietrichs, E. (2008). Unmasking psychiatric symptoms after STN deep brain stimulation in Parkinson’s disease. Acta Neurologica Scandinavica, 117, 41–45.CrossRefGoogle Scholar
  31. Mai, X., Zhang, W., Hu, X., Zhen, Z., Xu, Z., Zhang, J., & Liu, C. (2016). Using tDCS to explore the role of the right temporo-parietal junction in theory of mind and cognitive empathy. Frontiers in Psychology, 7, 380.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Maréchal, M. A., Cohn, A., Ugazio, G., & Ruff, C. C. (2017). Increasing honesty in humans with noninvasive brain stimulation. Proceedings of the National Academy of Sciences, 114(17), 4360–4364.CrossRefGoogle Scholar
  33. Nihonsugi, T., Ihara, A., & Haruno, M. (2015). Selective increase of intention-based economic decisions by noninvasive brain stimulation to the dorsolateral prefrontal cortex. Journal of Neuroscience, 35(8), 3412–3419.CrossRefPubMedGoogle Scholar
  34. Papuć, E., Trojanowski, T., Obszańska, K., & Stelmasiak, Z. (2015). Aggressive behavior as a rare side effect of subthalamic stimulation in Parkinson’s disease. Neurocase, 21(2), 220–225.CrossRefPubMedGoogle Scholar
  35. Pascual, L., Gallardo-Pujol, D., & Rodrigues, P. (2013). How does morality work in the brain? A functional and structural perspective of moral behavior. Frontiers in Integrative Neuroscience, 7, 65.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Perach-Barzilay, N., Tauber, A., Klein, E., Chistyakov, A., Ne'eman, R., & Shamay-Tsoory, S. G. (2013). Asymmetry in the dorsolateral prefrontal cortex and aggressive behavior: A continuous theta-burst magnetic stimulation study. Social Neuroscience, 8(2), 178–188.CrossRefPubMedGoogle Scholar
  37. Rêgo, G. G., Lapenta, O. M., Marques, L. M., Costa, T. L., Leite, J., Carvalho, S., et al. (2015). Hemispheric dorsolateral prefrontal cortex lateralization in the regulation of empathy for pain. Neuroscience Letters, 594, 12–16.CrossRefPubMedGoogle Scholar
  38. Riva, P., Gabbiadini, A., Lauro, L. J. R., Andrighetto, L., Volpato, C., & Bushman, B. J. (2017). Neuromodulation can reduce aggressive behavior elicited by violent video games. Cognitive, Affective, & Behavioral Neuroscience, 17(2), 452–459.CrossRefGoogle Scholar
  39. Robinson, P., & Darley, J. (1995). Justice, liability, and blame: Community views and the criminal law. Boulder, CO: Westview.Google Scholar
  40. Robinson, P. H., & Kurzban, R. (2006). Concordance and conflict in intuitions of justice. Minn. L. Rev., 91, 1829.Google Scholar
  41. Ruff, C. C., Ugazio, G., & Fehr, E. (2013). Changing social norm compliance with noninvasive brain stimulation. Science, 342(6157), 482–484.CrossRefPubMedGoogle Scholar
  42. Santens, P., Vanschoenbeek, G., Miatton, M., & De Letter, M. (2018). The moral brain and moral behaviour in patients with Parkinson’s disease: a review of the literature. Acta Neurologica Belgica, 1–7. Dovrebbe esser questo.Google Scholar
  43. Sellaro, R., Güroǧlu, B., Nitsche, M. A., van den Wildenberg, W. P., Massaro, V., Durieux, J., ... & Colzato, L. S. (2015). Increasing the role of belief information in moral judgments by stimulating the right temporoparietal junction. Neuropsychologia, 77, 400–408.Google Scholar
  44. Snowdon, M. E., & Cathcart, S. (2018). tDCS potentiation provides no evidence for a link between right dorsal–lateral prefrontal cortical activity and empathic responding. Social Neuroscience, 13(2), 190–201.CrossRefPubMedGoogle Scholar
  45. Strang, S., Gross, J., Schuhmann, T., Riedl, A., Weber, B., & Sack, A. T. (2014). Be nice if you have to—The neurobiological roots of strategic fairness. Social Cognitive and Affective Neuroscience, 10(6), 790–796.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Tassy, S., Oullier, O., Duclos, Y., Coulon, O., Mancini, J., Deruelle, C., et al. (2011). Disrupting the right prefrontal cortex alters moral judgement. Social Cognitive and Affective Neuroscience, 7(3), 282–288.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Torres, C. V., Sola, R. G., Pastor, J., Pedrosa, M., Navas, M., García-Navarrete, E., ... & García-Camba, E. (2013). Long-term results of posteromedial hypothalamic deep brain stimulation for patients with resistant aggressiveness. Journal of Neurosurgery, 119(2), 277–287.Google Scholar
  48. Wang, G., Li, J., Yin, X., Li, S., & Wei, M. (2016). Modulating activity in the orbitofrontal cortex changes trustees’ cooperation: A transcranial direct current stimulation study. Behavioural Brain Research, 303, 71–75.CrossRefPubMedGoogle Scholar
  49. Wang, J., Wang, Y., Hu, Z., & Li, X. (2014). Transcranial direct current stimulation of the dorsolateral prefrontal cortex increased pain empathy. Neuroscience, 281, 202–207.CrossRefPubMedGoogle Scholar
  50. Ye, H., Chen, S., Huang, D., Zheng, H., Jia, Y., & Luo, J. (2015). Modulation of neural activity in the temporoparietal junction with transcranial direct current stimulation changes the role of beliefs in moral judgment. Frontiers in Human Neuroscience, 9, 659.CrossRefPubMedPubMedCentralGoogle Scholar
  51. Young, L., Camprodon, J. A., Hauser, M., Pascual-Leone, A., & Saxe, R. (2010). Disruption of the right temporoparietal junction with transcranial magnetic stimulation reduces the role of beliefs in moral judgments. Proceedings of the National Academy of Sciences, 107(15), 6753–6758.CrossRefGoogle Scholar
  52. Yuan, H., Tabarak, S., Su, W., Liu, Y., Yu, J., & Lei, X. (2017). Transcranial direct current stimulation of the medial prefrontal cortex affects judgments of moral violations. Frontiers in Psychology, 8, 1812.CrossRefPubMedPubMedCentralGoogle Scholar
  53. Zheng, H., Lu, X., & Huang, D. (2018). tDCS over DLPFC leads to less utilitarian response in moral-personal judgment. Frontiers in Neuroscience, 12, 193.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • C. Di Nuzzo
    • 1
  • R. Ferrucci
    • 1
    • 2
    • 3
  • E. Gianoli
    • 2
  • M. Reitano
    • 2
  • D. Tedino
    • 2
  • F. Ruggiero
    • 2
  • Alberto Priori
    • 1
    • 3
    • 4
    Email author
  1. 1.“Aldo Ravelli” Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health SciencesUniversity of Milan Medical SchoolMilanItaly
  2. 2.Neurophysiology UnitIRCCS Ca’ Granda FoundationMilanItaly
  3. 3.UOC Neurologia IASST Santi Paolo e CarloMilanItaly
  4. 4.Università degli Studi di MilanoPolo Ospedaliero San PaoloMilanItaly

Personalised recommendations