Journal of Cognitive Enhancement

, Volume 3, Issue 1, pp 131–137 | Cite as

Mind-Reading or Misleading? Assessing Direct-to-Consumer Electroencephalography (EEG) Devices Marketed for Wellness and Their Ethical and Regulatory Implications

  • Anna WexlerEmail author
  • Robert Thibault


The market for direct-to-consumer brain health products—including brain-training games, neurostimulation devices, and consumer electroencephalography (EEG) devices—is expected to top $3 billion by 2020. While many direct-to-consumer neurotechnology products have come under scrutiny from scientists and regulators, one set of products—consumer EEG devices—have largely escaped scholarly and regulatory critique. While these products do not present overt safety risks, by claiming to provide individuals with “snapshots” of their own mental states, they present a subtle, and arguably more complex, set of ethical issues. In addition, consumer EEG companies often explicitly or implicitly rely on studies conducted in the field of neurofeedback, a domain in which almost all adequately controlled studies point to little more than an interesting placebo effect. This paper presents an initial critique of consumer EEG devices, focusing only on devices that are marketed directly to consumers for improving their well-being. We categorize the behavioral and wellness-related marketing claims made by consumer EEG companies, analyze the evidence base for such claims, and argue that the ethical and legal issues wrought by these devices deserve greater attention.


Direct-to-consumer neurotechnology Electroencephalography EEG Cognitive enhancement Brain health Neurofeedback Neuroethics Regulation of neurotechnology 


Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

41465_2018_91_MOESM1_ESM.docx (73 kb)
ESM 1 (DOCX 73 kb)


  1. Ali, S., Lifshitz, M., & Raz, A. (2014). Empirical neuroenchantment: from reading minds to thinking critically. Frontiers in Human Neuroscience, 27, 357. Scholar
  2. Armanfard, N., Komeili, M., Reilly, J.P., Pino, L. (2016). Vigilance lapse identification using sparse EEG electrode arrays. Canadian Conference on Electrical and Computer Engineering 2016-October, 1–4. doi:
  3. Bashivan, P., Rish, I., Heisig, S. (2015). Mental state recognition via wearable EEG. Proceedings of the 5 th NIPS workshop on Machine Learning and Interpretation in Neuroimaging (MLINI15).Google Scholar
  4. Beyerstein, B. L. (1990). Brainscams: neuromythologies of the new age. International Journal of Mental Health, 19, 27–36.CrossRefGoogle Scholar
  5. Bhayee, S., Tomaszewski, P., Lee, D. H., Moffat, G., Pino, L., Moreno, S., & Farb, N. A. S. (2016). Attentional and affective consequences of technology supported mindfulness training: a randomised, active control, efficacy trial. BMC Psychology, 4, 1–14. Scholar
  6. Boser, U., (2017). Betsy DeVos has invested millions in this “brain training” company. So I checked it out. Washington Post.
  7. Christopher, K.R., Kapur, A., Carnegie, D.A., (2014). A history of emerging paradigms in EEG for music. International Computer Music Conference Proceedings.Google Scholar
  8. Fink, S., Eder, S., Goldstein, M., (2017). Betsy DeVos invests in a therapy under scrutiny. New York Times.
  9. Fitz, N. S., & Reiner, P. B. (2015). The challenge of crafting policy for do-it-yourself brain stimulation. Journal of Medical Ethics, 41, 410–412. Scholar
  10. Food and Drug Administration. (2016). General wellness: policy for low risk devices - guidance for Industry and Food and Drug Administration Staff 1–13.Google Scholar
  11. FTC. (2016). Lumosity to pay $2 million to settle FTC deceptive advertising charges for its “Brain Training” Program. URL (Accessed May 3 2016).
  12. FTC. (2015). Makers of jungle rangers computer game for kids settle FTC charges that they deceived consumers with baseless “brain training” claims. URL (Accessed September 19 2017).
  13. Fuchs, T., Birbaumer, N., Lutzenberger, W., Gruzelier, J. H., & Kaiser, J. (2003). Neurofeedback treatment for attention-deficit / hyperactivity disorder in children : a comparison with methylphenidate. Applied Psychophysiology and Biofeedback, 28, 1–12.CrossRefGoogle Scholar
  14. Hashemi, A., Pino, L.J., Moffat, G., Mathewson, K.J., Aimone, C., Bennett, P.J., Schmidt, L.A., Sekuler, A.B., (2016). Characterizing population EEG dynamics throughout adulthood. eNeuro 3. doi:
  15. Heine, S. J. (2017). DNA is not destiny: the remarkable, completely misunderstood relationship between you and your genes. New York: W. W. Norton & Company.Google Scholar
  16. Kirsch, I., Wampold, B., & Kelley, J. M. (2016). Controlling for the placebo effect in psychotherapy: noble quest or tilting at windmills? Psychology of Consciousness: Theory, Research, and Practice, 3, 121–131. Scholar
  17. Krigolson, O. E., Williams, C. C., Norton, A., Hassall, C. D., & Colino, F. L. (2017). Choosing MUSE: validation of a low-cost, portable EEG system for ERP research. Frontiers in Neuroscience, 11, 109. Scholar
  18. Margo, C. E. (1999). The placebo effect. Survey of Ophthamology, 44, 31–44.CrossRefGoogle Scholar
  19. Mathewson, K. E., Harrison, T. J. L., & Kizuk, S. A. D. (2017). High and dry? Comparing active dry EEG electrodes to active and passive wet electrodes. Psychophysiology, 54(1), 74–82. Scholar
  20. Nichols, A. L., & Maner, J. K. (2008). The good-subject effect : investigating participant demand characteristics the good-subject effect. The Journal of General Psychology, 135, 151–166.CrossRefGoogle Scholar
  21. Ogrim, G., Kropotov, J., & Hestad, K. (2012). The quantitative EEG theta/beta ratio in attention deficit/hyperactivity disorder and normal controls: sensitivity, specificity, and behavioral correlates. Psychiatry Research, 198, 482–488. Scholar
  22. Olson, J. A., Landry, M., Appourchaux, K., & Raz, A. (2016). Simulated thought insertion: influencing the sense of agency using deception and magic. Consciousness and Cognition, 43, 11–26. Scholar
  23. Rangaswamy, M., Porjesz, B., Chorlian, D. B., Wang, K., Jones, K. A., Bauer, L. O., Rohrbaugh, J., O’Connor, S. J., Kuperman, S., Reich, T., & Begleiter, H. (2002). Beta power in the EEG of alcoholics. Biological Psychiatry, 52, 831–842.CrossRefGoogle Scholar
  24. Ratti, E., Waninger, S., Berka, C., Ruffini, G., & Verma, A. (2017). Comparison of medical and consumer wireless EEG Systems for use in clinical trials. Frontiers in Human Neuroscience, 11, 2355–2357. Scholar
  25. Roy, Y., (2017). EEG & BCI crowdfunding landscape. URL (Accessed May 26 2018).
  26. Schabus, M., Griessenberger, H., Gnjezda, M.-T., Heib, D., Wislowska, M., & Hoedlmoser, K. (2017). Better than sham? – a double-blind placebo-controlled neurofeedback study in primary insomnia. Brain, 140, 1041–1052.CrossRefGoogle Scholar
  27. Schönenberg, M., Wiedemann, E., Schneidt, A., Scheeff, J., Logemann, A., Keune, P. M., & Hautzinger, M. (2017). Neurofeedback, sham neurofeedback, and cognitive-behavioural group therapy in adults with attention-deficit hyperactivity disorder: a triple-blind, randomised, controlled trial. Lancet Psychiatry, 4, 673–684.CrossRefGoogle Scholar
  28. SharpBrains. (2018). Market Report on Pervasive Neurotechnology: a groundbreaking analysis of 10,000+ patent filings transforming medicine, health, entertainment and business.
  29. Sherlin, L. H., Larson, N. C., & Sherlin, R. M. (2012). Developing a performance brain training™ approach for baseball: a process analysis with descriptive data. Applied Psychophysiology and Biofeedback, 38, 29–44. Scholar
  30. Simons, D. J., Boot, W. R., Charness, N., Gathercole, S. E., Chabris, C. F., Hambrick, D. Z., & Stine-Morrow, E. A. L. (2016). Do “brain-training” programs work? Psychological Science in the Public Interest, 17, 103–186. Scholar
  31. Steenbergen, L., Sellaro, R., Hommel, B., Lindenberger, U., Kühn, S., & Colzato, L. S. (2016). “Unfocus” on commercial tDCS headset impairs working memory. Experimental Brain Research, 234, 637–643. Scholar
  32. Thibault, R. T., Lifshitz, M., Birbaumer, N., & Raz, A. (2015). Neurofeedback, self-regulation, and brain imaging: clinical science and fad in the service of mental disorders. Psychotherapy and Psychosomatics, 84, 193–207. Scholar
  33. Thibault, R. T., Lifshitz, M., & Raz, A. (2017). The climate of neurofeedback: scientific rigour and the perils of ideology. Brain, 141, 1–3. Scholar
  34. Thibault, R. T., & Raz, A. (2017). The psychology of neurofeedback: clinical intervention even if applied placebo. The American Psychologist, 72, 679–688. Scholar
  35. Thibault, R. T., & Raz, A. (2016). When can neurofeedback join the clinical armamentarium? Lancet Psychiatry, 3, 497–498. Scholar
  36. Waber, R. L., Shiv, B., Carmon, Z., & Ariely, D. (2008). Commercial features of placebo and therapeutic efficacy. Journal of the American Medical Association, 299, 1016–1017.CrossRefGoogle Scholar
  37. Wampold, B. E., Minami, T., Tierney, S. C., Baskin, T. W., & Bhati, K. S. (2005). The placebo is powerful: estimating placebo effects in medicine and psychotherapy from randomized clinical trials. Journal of Clinical Psychology, 61, 835–854. Scholar
  38. Wexler, A. (2018). Who uses direct-to-consumer brain stimulation products, and why? A study of home users of tDCS devices. Journal of Cognitive Enhancement, 2, 114–134. Scholar
  39. Wexler, A. (2016). A pragmatic analysis of the regulation of consumer transcranial direct current stimulation (tDCS) devices in the United States. Journal of Law and the Biosciences, 2, 669–696. Scholar
  40. Whitham, E. M., Pope, K. J., Fitzgibbon, S. P., Lewis, T., Clark, C. R., Loveless, S., Broberg, M., Wallace, A., DeLosAngeles, D., Lillie, P., Hardy, A., Fronsko, R., Pulbrook, A., & Willoughby, J. O. (2007). Scalp electrical recording during paralysis: quantitative evidence that EEG frequencies above 20 Hz are contaminated by EMG. Clinical Neurophysiology, 118, 1877–1888. Scholar
  41. Wyckoff, S. N., Sherlin, L. H., Ford, N. L., & Dalke, D. (2015). Validation of a wireless dry electrode system for electroencephalography. Journal of Neuroengineering and Rehabilitation, 12, 95. Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Medical Ethics & Health Policy, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaUSA
  2. 2.Integrated Program in NeuroscienceMcGill UniversityMontrealCanada
  3. 3.Institute for Interdisciplinary Brain and Behavioral SciencesChapman UniversityIrvineUSA

Personalised recommendations