Advertisement

Journal of Cognitive Enhancement

, Volume 3, Issue 1, pp 111–123 | Cite as

Parietal, but Not Motor Cortex, HD-atDCS Deteriorates Learning Transfer of a Complex Bimanual Coordination Task

  • Nils Henrik PixaEmail author
  • Alisa Berger
  • Fabian Steinberg
  • Michael Doppelmayr
Original Article

Abstract

The non-invasive brain stimulation technique, transcranial direct current stimulation (tDCS), is thought to alter cortical excitability and induce neuroplastic changes. When anodal tDCS is applied in association with motor practice, it has frequently been shown to modulate motor performance and motor skill learning. However, the majority of evidence comes from research on tDCS effects on unimanual motor tasks. Despite the abundance of activities of daily life that require complex bimanual motor skills, systematic explorations of the effects of tDCS on the modulation of bimanual motor performance and learning remain sparse. Therefore, the objective of this study was to investigate the effects of anodal high-definition tDCS (HD-atDCS) on motor performance, motor skill learning, and transfer of a complex bimanual coordination task. Twenty-seven healthy right-handed volunteers, divided into three groups, participated in this double-blind study on five separate days. Between a pre- and posttest, participants practiced the bimanual task on 3 days (training days) and concurrently received either bilateral HD-atDCS over the primary motor cortex, parietal cortex, or a sham stimulation. On the fourth day, a retention test was performed, and a second took place after additional 5 to 7 days. Neither motor nor parietal HD-atDCS improved the performance or learning of the bimanual coordination task. Unexpectedly, we found a detrimental effect of parietal HD-atDCS on a transfer task, which was most pronounced during consolidation. Therefore, further research is needed to prove the potential of tDCS to modulate bimanual motor skills and elaborate optimized stimulation protocols for application, such as in the recovery of neurological impairments of the upper limbs.

Keywords

Brain stimulation High-definition transcranial direct current stimulation Bimanual action Motor learning Motor cortex Parietal cortex 

Notes

Acknowledgements

We thank N. Spahn and F. Schneewind for support during data acquisition and J. Nassauer and F. Thomas for graphical support.

Compliance with Ethical Standards

Conflict of Interest

The author states that there is no conflict of interest.

Supplementary material

41465_2018_88_MOESM1_ESM.docx (14 kb)
ESM 1 (DOCX 14 kb)

References

  1. Albers, C., & Lakens, D. (2018). When power analyses based on pilot data are biased: Inaccurate effect size estimators and follow-up bias. Journal of Experimental Social Psychology, 74, 187–195.  https://doi.org/10.1016/j.jesp.2017.09.004.Google Scholar
  2. Antal, A., Alekseichuk, I., Bikson, M., Brockmöller, J., Brunoni, A. R., Chen, R., et al. (2017). Low intensity transcranial electric stimulation: safety, ethical, legal regulatory and application guidelines. Clinical Neurophysiology: official journal of the International Federation of Clinical Neurophysiology, 128(9), 1774–1809.  https://doi.org/10.1016/j.clinph.2017.06.001.Google Scholar
  3. Antal, A., Begemeier, S., Nitsche, M. A., & Paulus, W. (2008). Prior state of cortical activity influences subsequent practicing of a visuomotor coordination task. Neuropsychologia, 46(13), 3157–3161.  https://doi.org/10.1016/j.neuropsychologia.2008.07.007.Google Scholar
  4. Antal, A., Polania, R., Schmidt-Samoa, C., Dechent, P., & Paulus, W. (2011). Transcranial direct current stimulation over the primary motor cortex during fMRI. NeuroImage, 55(2), 590–596.  https://doi.org/10.1016/j.neuroimage.2010.11.085.Google Scholar
  5. Bailey, R. R., Klaesner, J. W., & Lang, C. E. (2015). Quantifying real-world upper-limb activity in nondisabled adults and adults with chronic stroke. Neurorehabilitation and Neural Repair, 29(10), 969–978.  https://doi.org/10.1177/1545968315583720.Google Scholar
  6. Bastani, A., & Jaberzadeh, S. (2012). Does anodal transcranial direct current stimulation enhance excitability of the motor cortex and motor function in healthy individuals and subjects with stroke: a systematic review and meta-analysis. Clinical Neurophysiology: Official Journal of the International Federation of Clinical Neurophysiology, 123(4), 644–657.  https://doi.org/10.1016/j.clinph.2011.08.029.Google Scholar
  7. Battaglia-Mayer, A., Archambault, P. S., & Caminiti, R. (2006). The cortical network for eye-hand coordination and its relevance to understanding motor disorders of parietal patients. Neuropsychologia, 44(13), 2607–2620.  https://doi.org/10.1016/j.neuropsychologia.2005.11.021.Google Scholar
  8. Baudewig, J., Nitsche, M. A., Paulus, W., & Frahm, J. (2001). Regional modulation of BOLD MRI responses to human sensorimotor activation by transcranial direct current stimulation. Magnetic Resonance in Medicine, 45(2), 196–201.Google Scholar
  9. Bikson, M., Grossman, P., Thomas, C., Zannou, A. L., Jiang, J., Adnan, T., et al. (2016). Safety of transcranial direct current stimulation // safety of transcranial direct current stimulation: evidence based update 2016: evidence based update 2016. Brain Stimulation, 9(5), 641–661.  https://doi.org/10.1016/j.brs.2016.06.004.Google Scholar
  10. Bolognini, N., Fregni, F., Casati, C., Olgiati, E., & Vallar, G. (2010a). Brain polarization of parietal cortex augments training-induced improvement of visual exploratory and attentional skills. Brain Research, 1349, 76–89.  https://doi.org/10.1016/j.brainres.2010.06.053.Google Scholar
  11. Bolognini, N., Olgiati, E., Rossetti, A., & Maravita, A. (2010b). Enhancing multisensory spatial orienting by brain polarization of the parietal cortex. European Journal of Neuroscience, 31(10), 1800–1806.  https://doi.org/10.1111/j.1460-9568.2010.07211.x.Google Scholar
  12. Bolognini, N., Pascual-Leone, A., & Fregni, F. (2009). Using non-invasive brain stimulation to augment motor training-induced plasticity. Journal of Neuroengineering and Rehabilitation, 6, 8.  https://doi.org/10.1186/1743-0003-6-8.Google Scholar
  13. Bradnam, L. V., Stinear, C. M., Lewis, G. N., & Byblow, W. D. (2010). Task-dependent modulation of inputs to proximal upper limb following transcranial direct current stimulation of primary motor cortex. Journal of Neurophysiology, 103(5), 2382–2389.  https://doi.org/10.1152/jn.01046.2009.Google Scholar
  14. Brodt, S., Pöhlchen, D., Flanagin, V. L., Glasauer, S., Gais, S., & Schönauer, M. (2016). Rapid and independent memory formation in the parietal cortex. Proceedings of the National Academy of Sciences of the United States of America, 113(46), 13251–13256.  https://doi.org/10.1073/pnas.1605719113.Google Scholar
  15. Broeder, S., Nackaerts, E., Heremans, E., Vervoort, G., Meesen, R., Verheyden, G., & Nieuwboer, A. (2015). Transcranial direct current stimulation in Parkinson’s disease: neurophysiological mechanisms and behavioral effects. Neuroscience & Biobehavioral Reviews, 57, 105–117.  https://doi.org/10.1016/j.neubiorev.2015.08.010.Google Scholar
  16. Buch, E. R., Santarnecchi, E., Antal, A., Born, J., Celnik, P. A., Classen, J., et al. (2017). Effects of tDCS on motor learning and memory formation: a consensus and critical position paper: a consensus and critical position paper. Clinical Neurophysiology: Official Journal of the International Federation of Clinical Neurophysiology, 128(4), 589–603.  https://doi.org/10.1016/j.clinph.2017.01.004.Google Scholar
  17. Buneo, C. A., & Andersen, R. A. (2006). The posterior parietal cortex: sensorimotor interface for the planning and online control of visually guided movements. Neuropsychologia, 44(13), 2594–2606.  https://doi.org/10.1016/j.neuropsychologia.2005.10.011.Google Scholar
  18. Ciechanski, P., & Kirton, A. (2017). Transcranial direct-current stimulation can enhance motor learning in children. Cerebral cortex (New York, N.Y.: 1991), 27(5), 2758–2767.  https://doi.org/10.1093/cercor/bhw114.Google Scholar
  19. Cohen, J. (2013). Statistical power analysis for the behavioral sciences. Burlington: Elsevier Science Retrieved from http://gbv.eblib.com/patron/FullRecord.aspx?p=1882849.Google Scholar
  20. Convento, S., Bolognini, N., Fusaro, M., Lollo, F., & Vallar, G. (2014). Neuromodulation of parietal and motor activity affects motor planning and execution. Cortex: A journal devoted to the study of the nervous system and behavior, 57, 51–59.  https://doi.org/10.1016/j.cortex.2014.03.006.Google Scholar
  21. Culham, J. C., Cavina-Pratesi, C., & Singhal, A. (2006). The role of parietal cortex in visuomotor control: what have we learned from neuroimaging? Neuropsychologia, 44(13), 2668–2684.  https://doi.org/10.1016/j.neuropsychologia.2005.11.003.Google Scholar
  22. Cumming, G. (2012). Understanding the new statistics: effect sizes, confidence intervals, and meta-analysis. Multivariate applications series. Hoboken: Taylor & Francis Retrieved from http://gbv.eblib.com/patron/FullRecord.aspx?p=957018.Google Scholar
  23. Debaere, F., Wenderoth, N., Sunaert, S., van Hecke, P., & Swinnen, S. P. (2004). Changes in brain activation during the acquisition of a new bimanual coodination task. Neuropsychologia, 42(7), 855–867.  https://doi.org/10.1016/j.neuropsychologia.2003.12.010.Google Scholar
  24. Dienes, Z. (2014). Using Bayes to get the most out of non-significant results. Frontiers in Psychology, 5, 781.  https://doi.org/10.3389/fpsyg.2014.00781.Google Scholar
  25. Doppelmayr, M., Pixa, N. H., & Steinberg, F. (2016). Cerebellar, but not motor or parietal, high-density anodal transcranial direct current stimulation facilitates motor adaptation. Journal of the International Neuropsychological Society: JINS, 22(9), 928–936.  https://doi.org/10.1017/S1355617716000345.
  26. Filimon, F. (2010). Human cortical control of hand movements: parietofrontal networks for reaching, grasping and pointing. The Neuroscientist: a review journal bringing neurobiology, neurology and psychiatry, 16(4), 388–407.  https://doi.org/10.1177/1073858410375468.Google Scholar
  27. Flöel, A. (2014). tDCS-enhanced motor and cognitive function in neurological diseases. NeuroImage, 85, 934–947.  https://doi.org/10.1016/j.neuroimage.2013.05.098.Google Scholar
  28. Fritz, C. O., Morris, P. E., & Richler, J. J. (2012). Effect size estimates: current use, calculations, and interpretation. Journal of Experimental Psychology. General, 141(1), 2–18.  https://doi.org/10.1037/a0024338.Google Scholar
  29. Gandiga, P. C., Hummel, F. C., & Cohen, L. G. (2006). Transcranial DC stimulation (tDCS): a tool for double-blind sham-controlled clinical studies in brain stimulation. Clinical Neurophysiology: Official Journal of the International Federation of Clinical Neurophysiology, 117(4), 845–850.  https://doi.org/10.1016/j.clinph.2005.12.003.Google Scholar
  30. Gomes-Osman, J., & Field-Fote, E. C. (2013). Bihemispheric anodal corticomotor stimulation using transcranial direct current stimulation improves bimanual typing task performance. Journal of Motor Behavior, 45(4), 361–367.  https://doi.org/10.1080/00222895.2013.808604.Google Scholar
  31. Gottlieb, J. (2007). From thought to action: the parietal cortex as a bridge between perception, action, and cognition. Neuron, 53(1), 9–16.  https://doi.org/10.1016/j.neuron.2006.12.009.Google Scholar
  32. Gross, J., Pollok, B., Dirks, M., Timmermann, L., Butz, M., & Schnitzler, A. (2005). Task-dependent oscillations during unimanual and bimanual movements in the human primary motor cortex and SMA studied with magnetoencephalography. NeuroImage, 26(1), 91–98.  https://doi.org/10.1016/j.neuroimage.2005.01.025.Google Scholar
  33. Halsband, U., & Lange, R. K. (2006). Motor learning in man: a review of functional and clinical studies. Journal of Physiology, Paris, 99(4–6), 414–424.  https://doi.org/10.1016/j.jphysparis.2006.03.007.Google Scholar
  34. Hardwick, R. M., Rottschy, C., Miall, R. C., & Eickhoff, S. B. (2013). A quantitative meta-analysis and review of motor learning in the human brain. NeuroImage, 67, 283–297.  https://doi.org/10.1016/j.neuroimage.2012.11.020.Google Scholar
  35. Huang, Y.-Z., Rothwell, J. C., Edwards, M. J., & Chen, R.-S. (2008). Effect of physiological activity on an NMDA-dependent form of cortical plasticity in human. Cerebral cortex (New York, N.Y.: 1991), 18(3), 563–570.  https://doi.org/10.1093/cercor/bhm087.Google Scholar
  36. Jamil, A., & Nitsche, M. A. (2017). What effect does tDCS have on the brain? Basic physiology of tDCS. Current Behavioral Neuroscience Reports, 4(4), 331–340.  https://doi.org/10.1007/s40473-017-0134-5.Google Scholar
  37. JASP Team. (2018). JASP (Version 0.8.6) [computer software].Google Scholar
  38. Jeffreys, H. (1961). Theory of probability. Oxford, UK: Oxford University Press.Google Scholar
  39. Jurcak, V., Tsuzuki, D., & Dan, I. (2007). 10/20, 10/10, and 10/5 systems revisited: their validity as relative head-surface-based positioning systems. NeuroImage, 34(4), 1600–1611.  https://doi.org/10.1016/j.neuroimage.2006.09.024.Google Scholar
  40. Kang, N., Summers, J. J., & Cauraugh, J. H. (2016). Transcranial direct current stimulation facilitates motor learning post-stroke: a systematic review and meta-analysis. Journal of Neurology, Neurosurgery, and Psychiatry, 87(4), 345–355.  https://doi.org/10.1136/jnnp-2015-311242.Google Scholar
  41. Kantak, S., Jax, S., & Wittenberg, G. (2017). Bimanual coordination: a missing piece of arm rehabilitation after stroke. Restorative Neurology and Neuroscience, 35(4), 347–364.  https://doi.org/10.3233/RNN-170737.Google Scholar
  42. Kantak, S. S., & Winstein, C. J. (2012). Learning-performance distinction and memory processes for motor skills: a focused review and perspective. Behavioural Brain Research, 228(1), 219–231.  https://doi.org/10.1016/j.bbr.2011.11.028.Google Scholar
  43. Karni, A., Meyer, G., Jezzard, P., Adams, M. M., Turner, R., & Ungerleider, L. G. (1995). Functional MRI evidence for adult motor cortex plasticity during motor skill learning. Nature, 377(6545), 155–158.  https://doi.org/10.1038/377155a0.Google Scholar
  44. Kidgell, D. J., Goodwill, A. M., Frazer, A. K., & Daly, R. M. (2013). Induction of cortical plasticity and improved motor performance following unilateral and bilateral transcranial direct current stimulation of the primary motor cortex. BMC Neuroscience, 14, 64.  https://doi.org/10.1186/1471-2202-14-64.Google Scholar
  45. Krehbiel, L. M., Kang, N., & Cauraugh, J. H. (2017). Age-related differences in bimanual movements: a systematic review and meta-analysis. Experimental Gerontology, 98, 199–206.  https://doi.org/10.1016/j.exger.2017.09.001.Google Scholar
  46. Kwon, J. W., Nam, S. H., Lee, N. K., Son, S. M., Choi, Y. W., & Kim, C. S. (2013). The effect of transcranial direct current stimulation on the motor suppression in stop-signal task. NeuroRehabilitation, 32(1), 191–196.  https://doi.org/10.3233/NRE-130836.Google Scholar
  47. Lakens, D. (2013). Calculating and reporting effect sizes to facilitate cumulative science: a practical primer for t-tests and ANOVAs. Frontiers in Psychology, 4, 863.  https://doi.org/10.3389/fpsyg.2013.00863.Google Scholar
  48. Li, L. M., Uehara, K., & Hanakawa, T. (2015). The contribution of interindividual factors to variability of response in transcranial direct current stimulation studies. Frontiers in Cellular Neuroscience, 9(180), 898.  https://doi.org/10.3389/fncel.2015.00181.Google Scholar
  49. Maes, C., Gooijers, J., Orban de Xivry, J.-J., Swinnen, S. P., & Boisgontier, M. P. (2017). Two hands, one brain, and aging. Neuroscience and Biobehavioral Reviews, 75, 234–256.  https://doi.org/10.1016/j.neubiorev.2017.01.052.Google Scholar
  50. Mesulam, M. M. (1981). A cortical network for directed attention and unilateral neglect. Annals of Neurology, 10(4), 309–325.  https://doi.org/10.1002/ana.410100402.Google Scholar
  51. Miranda, P. C., Mekonnen, A., Salvador, R., & Ruffini, G. (2013). The electric field in the cortex during transcranial current stimulation. NeuroImage, 70, 48–58.  https://doi.org/10.1016/j.neuroimage.2012.12.034.Google Scholar
  52. Nitsche, M. A., & Paulus, W. (2001). Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology, 57(10), 1899–1901.  https://doi.org/10.1212/WNL.57.10.1899.Google Scholar
  53. Obhi, S. S. (2004). Bimanual coordination: an unbalanced field of research. Motor Control, 8(2), 111–120.  https://doi.org/10.1123/mcj.8.2.111.Google Scholar
  54. Oldfield, R. C. (1971). The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia, 9(1), 97–113.  https://doi.org/10.1016/0028-3932(71)90067-4.Google Scholar
  55. Orban de Xivry, J.-J., Marko, M. K., Pekny, S. E., Pastor, D., Izawa, J., Celnik, P., & Shadmehr, R. (2011). Stimulation of the human motor cortex alters generalization patterns of motor learning. The Journal of neuroscience : the official journal of the Society for Neuroscience, 31(19), 7102–7110.  https://doi.org/10.1523/JNEUROSCI.0273-11.2011.Google Scholar
  56. Pixa, N. H., & Pollok, B. (2018). Effects of tDCS on bimanual motor skills: a brief review. Frontiers in Behavioral Neuroscience, 12, 63.  https://doi.org/10.3389/fnbeh.2018.00063.Google Scholar
  57. Pixa, N. H., Steinberg, F., & Doppelmayr, M. (2017a). Effects of high-definition anodal transcranial direct current stimulation applied simultaneously to both primary motor cortices on bimanual sensorimotor performance. Frontiers in Behavioral Neuroscience, 11, 4506.  https://doi.org/10.3389/fnbeh.2017.00130.Google Scholar
  58. Pixa, N. H., Steinberg, F., & Doppelmayr, M. (2017b). High-definition transcranial direct current stimulation to both primary motor cortices improves unimanual and bimanual dexterity. Neuroscience Letters, 643, 84–88.  https://doi.org/10.1016/j.neulet.2017.02.033.Google Scholar
  59. Pollok, B., Müller, K., Aschersleben, G., Schnitzler, A., & Prinz, W. (2004). Bimanual coordination: neuromagnetic and behavioral data. NeuroReport, 15(3), 449–452.Google Scholar
  60. Poreisz, C., Boros, K., Antal, A., & Paulus, W. (2007). Safety aspects of transcranial direct current stimulation concerning healthy subjects and patients. Brain Research Bulletin, 72(4–6), 208–214.  https://doi.org/10.1016/j.brainresbull.2007.01.004.Google Scholar
  61. Priori, A. (2003). Brain polarization in humans: a reappraisal of an old tool for prolonged non-invasive modulation of brain excitability. Clinical Neurophysiology, 114(4), 589–595.  https://doi.org/10.1016/S1388-2457(02)00437-6.Google Scholar
  62. Puttemans, V., Wenderoth, N., & Swinnen, S. P. (2005). Changes in brain activation during the acquisition of a multifrequency bimanual coordination task: from the cognitive stage to advanced levels of automaticity. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 25(17), 4270–4278.  https://doi.org/10.1523/JNEUROSCI.3866-04.2005.Google Scholar
  63. Reis, J., & Fritsch, B. (2011). Modulation of motor performance and motor learning by transcranial direct current stimulation. Current Opinion in Neurology, 24(6), 590–596.  https://doi.org/10.1097/WCO.0b013e32834c3db0.Google Scholar
  64. Rémy, F., Wenderoth, N., Lipkens, K., & Swinnen, S. P. (2008). Acquisition of a new bimanual coordination pattern modulates the cerebral activations elicited by an intrinsic pattern: An fMRI study. Cortex: A journal devoted to the study of the nervous system and behavior, 44(5), 482–493.  https://doi.org/10.1016/j.cortex.2007.07.004.Google Scholar
  65. Rice, N. J., Tunik, E., & Grafton, S. T. (2006). The anterior intraparietal sulcus mediates grasp execution, independent of requirement to update: new insights from transcranial magnetic stimulation. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 26(31), 8176–8182.  https://doi.org/10.1523/JNEUROSCI.1641-06.2006.Google Scholar
  66. Rouder, J. N., Morey, R. D., Speckman, P. L., & Province, J. M. (2012). Default Bayes factors for ANOVA designs. Journal of Mathematical Psychology, 56(5), 356–374.  https://doi.org/10.1016/j.jmp.2012.08.001.Google Scholar
  67. Roy, L. B., Sparing, R., Fink, G. R., & Hesse, M. D. (2015). Modulation of attention functions by anodal tDCS on right PPC. Neuropsychologia 74, 96–107.  https://doi.org/10.1016/j.neuropsychologia.2015.02.028.
  68. Saucedo Marquez, C. M., Zhang, X., Swinnen, S. P., Meesen, R., & Wenderoth, N. (2013). Task-specific effect of transcranial direct current stimulation on motor learning. Frontiers in Human Neuroscience, 7, 333.  https://doi.org/10.3389/fnhum.2013.00333.Google Scholar
  69. Schmidt, R. A., & Lee, T. D. (2011). Motor control and learning: a behavioral emphasis (5th ed.). Champaign: Human Kinetics.Google Scholar
  70. Stagg, C. J., Jayaram, G., Pastor, D., Kincses, Z. T., Matthews, P. M., & Johansen-Berg, H. (2011). Polarity and timing-dependent effects of transcranial direct current stimulation in explicit motor learning. Neuropsychologia, 49(5), 800–804.  https://doi.org/10.1016/j.neuropsychologia.2011.02.009.Google Scholar
  71. Stagg, C. J., Bachtiar, V., Amadi, U., Gudberg, C. A., Ilie, A. S., Sampaio-Baptista, C., et al. (2014). Local GABA concentration is related to network-level resting functional connectivity. eLife, 3, e01465.  https://doi.org/10.7554/eLife.01465.Google Scholar
  72. Summers, J. J., Kang, N., & Cauraugh, J. H. (2016). Does transcranial direct current stimulation enhance cognitive and motor functions in the ageing brain? A systematic review and meta- analysis. Ageing Research Reviews, 25, 42–54.  https://doi.org/10.1016/j.arr.2015.11.004.Google Scholar
  73. Swinnen, S. P., & Gooijers, J. (2015). Bimanual coordination. In A. W. Toga (Ed.), Brain mapping: an encyclopedic reference (pp. 475–482). Burlington: Elsevier Science.  https://doi.org/10.1016/B978-0-12-397025-1.00030-0.Google Scholar
  74. Swinnen, S. P. (2002). Intermanual coordination: from behavioural principles to neural-network interactions. Nature Reviews. Neuroscience, 3(5), 348–359.  https://doi.org/10.1038/nrn807.Google Scholar
  75. Todd, G., Rogasch, N. C., Flavel, S. C., & Ridding, M. C. (2009). Voluntary movement and repetitive transcranial magnetic stimulation over human motor cortex. Journal of Applied Physiology (Bethesda, Md. : 1985), 106(5), 1593–1603.  https://doi.org/10.1152/japplphysiol.91364.2008.Google Scholar
  76. Tunik, E., Rice, N. J., Hamilton, A., & Grafton, S. T. (2007). Beyond grasping: representation of action in human anterior intraparietal sulcus. NeuroImage, 36(Suppl 2), T77–T86.  https://doi.org/10.1016/j.neuroimage.2007.03.026.Google Scholar
  77. Tunik, E., Frey, S. H., & Grafton, S. T. (2005). Virtual lesions of the anterior intraparietal area disrupt goal-dependent on-line adjustments of grasp. Nature Neuroscience, 8(4), 505–511.  https://doi.org/10.1038/nn1430.Google Scholar
  78. Turi, Z., Paulus, W., & Antal, A. (2012). Functional neuroimaging and transcranial electrical stimulation. Clinical EEG and Neuroscience, 43(3), 200–208.  https://doi.org/10.1177/1550059412444978.Google Scholar
  79. Vancleef, K., Meesen, R., Swinnen, S. P., & Fujiyama, H. (2016). tDCS over left M1 or DLPFC does not improve learning of a bimanual coordination task. Scientific Reports, 6, 35739.  https://doi.org/10.1038/srep35739.Google Scholar
  80. Wagenmakers, E.-J., Love, J., Marsman, M., Jamil, T., Ly, A., Verhagen, J., et al. (2018a). Bayesian inference for psychology. Part II: example applications with JASP. Psychonomic Bulletin & Review, 25(1), 58–76.  https://doi.org/10.3758/s13423-017-1323-7.Google Scholar
  81. Wagenmakers, E.-J., Marsman, M., Jamil, T., Ly, A., Verhagen, J., Love, J., et al. (2018b). Bayesian inference for psychology. Part I: theoretical advantages and practical ramifications. Psychonomic Bulletin & Review, 25(1), 35–57.  https://doi.org/10.3758/s13423-017-1343-3.Google Scholar
  82. Wenderoth, N., Debaere, F., Sunaert, S., & Swinnen, S. P. (2005). Spatial interference during bimanual coordination: differential brain networks associated with control of movement amplitude and direction. Human Brain Mapping, 26(4), 286–300.  https://doi.org/10.1002/hbm.20151.Google Scholar
  83. Wiethoff, S., Hamada, M., & Rothwell, J. C. (2014). Variability in response to transcranial direct current stimulation of the motor cortex. Brain Stimulation, 7(3), 468–475.  https://doi.org/10.1016/j.brs.2014.02.003.Google Scholar
  84. Wu, J., Srinivasan, R., Kaur, A., & Cramer, S. C. (2014). Resting-state cortical connectivity predicts motor skill acquisition. NeuroImage, 91, 84–90.  https://doi.org/10.1016/j.neuroimage.2014.01.026.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Sport Psychology, Institute of Human Movement Science and Health, Faculty of Behavioral and Social SciencesChemnitz University of TechnologyChemnitzGermany
  2. 2.Sport Psychology, Institute of Sports ScienceJohannes Gutenberg-UniversityMainzGermany
  3. 3.Centre for Cognitive NeuroscienceSalzburgAustria

Personalised recommendations