Advertisement

Journal of Cognitive Enhancement

, Volume 3, Issue 1, pp 104–110 | Cite as

Simon-Task Reveals Balanced Visuomotor Control in Experienced Video-Game Players

  • Andrew James LathamEmail author
  • Christine Westermann
  • Lucy L. M. Patston
  • Nathan A. Ryckman
  • Lynette J. Tippett
Brief Report

Abstract

Both short and long-term video-game play may result in superior performance on visual and attentional tasks. To further these findings, we compared the performance of experienced male video-game players (VGPs) and non-VGPs on a Simon-task. Experienced-VGPs began playing before the age of 10, had a minimum of 8 years of experience and a minimum play time of over 20 h per week over the past 6 months. Our results reveal a significantly reduced Simon-effect in experienced-VGPs relative to non-VGPs. However, this was true only for the right-responses, which typically show a greater Simon-effect than left-responses. In addition, experienced-VGPs demonstrated significantly quicker reaction times and more balanced left-versus-right-hand performance than non-VGPs. Our results suggest that experienced-VGPs can resolve response-selection conflicts more rapidly for right-responses than non-VGPs, and this may in part be underpinned by improved bimanual motor control.

Keywords

Video-games Simon-task Simon-effect Laterality Visuomotor control Visuospatial attention 

Notes

Compliance with Ethical Standards

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

References

  1. Bailey, K., West, R., & Anderson, C. A. (2010). A negative association between video game experience and proactive cognitive control. Psychophysiology, 47(1), 34–42.CrossRefGoogle Scholar
  2. Bialystok, E. (2006). Effect of bilingualism and compute video game experience on the Simon task. Canadian Journal of Experimental Psychology, 60, 68–79.CrossRefGoogle Scholar
  3. Boot, W. R., Blakely, D. P., & Simons, D. J. (2011). Do action video games improve perception and cognition? Frontiers in Psychology, 2, 226.CrossRefGoogle Scholar
  4. Brochard, R., Dufour, A., & Despres, O. (2004). Effect of musical expertise on visuospatial abilities: Evidence from reaction times and mental imagery. Brain and Cognition, 54, 103–109.CrossRefGoogle Scholar
  5. Chisholm, J. D., Hickey, C., Theeuwes, J., & Kingstone, A. (2010). Reduced attentional capture in action video game players. Attention, Perception and Psychophysics, 72, 667–671.CrossRefGoogle Scholar
  6. De Jong, R., Liang, C. C., & Lauber, E. (1994). Conditional and unconditional automacity: A dual-process model of effects of spatial stimulus-response correspondence. Journal of Experimental Psychology: Human Perceptual Performance, 21, 837–854.Google Scholar
  7. Feng, J., Spence, I., & Pratt, J. (2007). Playing an action video game reduces gender difference in spatial cognition. Psychological Science, 18(10), 850–855.CrossRefGoogle Scholar
  8. Gobet, F., Johnston, S. J., Ferrufino, G., Johnston, M., Jones, M. B., Molyneux, A., Terzis, A., & Weeden, L. (2014). “No level up!”: No effects of video game specialization and expertise on cognitive performance. Frontiers in Psychology, 5, 1337.Google Scholar
  9. Goldstein, J. H., Cajko, L., Oosterbroek, M., Michielsen, M., van Houten, O., & Salverda, F. (1997). Video games and the elderly. Social Behavior and Personality, 25, 345–352.CrossRefGoogle Scholar
  10. Green, C. S., & Bavelier, D. (2003). Action video game modifies visual selective attention. Nature, 423(6939), 534–537.CrossRefGoogle Scholar
  11. Hommel, B. (1993). The role of attention for the Simon effect. Psychological Research, 55, 208–221.Google Scholar
  12. Hutchinson, C. V., Barrett, D. J. K., Nitka, A., & Raynes, K. (2016). Action video game training reduces the Simon effect. Psychonomic Bulletin and Review, 23, 587–592.CrossRefGoogle Scholar
  13. Irons, J. L., Remington, R. W., & McLean, J. P. (2011). Not so fast, rethinking the effects of action video games on attentional capacity. Australia Journal of Psychology, 63(4), 224–231.CrossRefGoogle Scholar
  14. Latham, A. J., Patston, L. L. M., & Tippett, L. J. (2013a). The virtual brain: 30 years of video-game play and cognitive abilities. Frontiers in Psychology, 4, 629.Google Scholar
  15. Latham, A. J., Patston, L. L. M., & Tippett, L. J. (2013b). Just how expert are “expert” video-game players? Assessing the experience and expertise of video-game players across “action” video-game genres. Frontiers in Psychology, 4, 941.Google Scholar
  16. Latham, A. J., Patston, L. L. M., & Tippett, L. J. (2014). The precision of experience action video-game players: Line bisection reveals reduced leftward response bias. Attention, Perception, & Psychophysics, 76(8), 2193–2198.CrossRefGoogle Scholar
  17. Latham, A. J., Patston, L. L. M., Westermann, C., Kirk, I. J., & Tippett, L. J. (2013c). Earlier visual N1 latencies in expert video-game players: A temporal basis of enhanced visuospatial performance? PLoS One, 8(9), e75231.CrossRefGoogle Scholar
  18. Li, R., Polat, U., Scalzo, F., & Bavelier, D. (2010). Reducing backward masking through action game training. Journal of Vision, 10(14), 1–13.CrossRefGoogle Scholar
  19. Murphy, K., & Spencer, A. (2009). Playing video games does not make for better visual attention skills. Journal of Articles in Support of the Null Hypothesis, 6(1), 1–20.Google Scholar
  20. Oei, A. C., & Patterson, M. D. (2014). Are videogame training gains specific or general? Frontiers in Systems Neuroscience, 8, 54.CrossRefGoogle Scholar
  21. Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9, 97–113.CrossRefGoogle Scholar
  22. Oliveri, M., Rausei, V., Koch, G., Torriero, S., Turriziani, P., & Caltagirone, C. (2004). Overestimation of numerical distances in the left side of space. Neurology, 63, 2139–2141.CrossRefGoogle Scholar
  23. Patston, L. L. M., Corballis, M. C., Hogg, S. L., & Tippett, L. J. (2006). The neglect of musicians: Line bisection reveals an opposite bias. Psychological Science, 17(12), 1029–1031.CrossRefGoogle Scholar
  24. Patston, L. L. M., Hogg, S. L., & Tippett, L. J. (2007). Attention in musicians is more bilateral than in non-musicians. Laterality, 12(3), 262–272.CrossRefGoogle Scholar
  25. Proctor, R. W., Lu, C. H., Wang, H., & Dutta, A. (1995). Activation of response codes by relevant and irrelevant stimulus information. Acta Psychologica, 90, 275–286.CrossRefGoogle Scholar
  26. Proctor, R. W., & Vu, K. P. L. (2006). Stimulus-response compatibility principles. Data, theory, and application. Boca Raton: CRC Press, Taylor & Francis Group.Google Scholar
  27. van Ravenzwaaij, D., Boekel, W., Forstmann, B. U., Ratcliff, R., & Wagenmakers, E.-J. (2014). Action video games do not improve the speed of information processing in simple perceptual tasks. Journal of Experimental Psychology: General, 143(5), 1794–1805.CrossRefGoogle Scholar
  28. Rushworth, M. F., Johansen-Berg, H., Gobel, S. M., & Devlin, J. T. (2003). The left parietal and premotor cortices: Motor attention and selection. Neuroimage, 20, 98–100.CrossRefGoogle Scholar
  29. Schluter, N. D., Rushworth, M. F. S., Passingham, R. E., & Mills, K. R. (1998). Temporary interference in human lateral premotor cortex suggests dominance for the selection of movements. A study using transcranial magnetic stimulation. Brain, 121, 785–799.CrossRefGoogle Scholar
  30. de Schotten, M. T., Dell’Acqua, F., Forkel, S. J., Simmons, A., Vergani, F., Murphy, D. G. M., & Catani, M. (2011). A lateralized brain network for visuospatial attention. Nature Neuroscience, 14, 1245–1246.CrossRefGoogle Scholar
  31. Simon, J. R., & Rudell, A. P. (1967). Auditory S-R compatibility: The effect of an irrelevant cue on information processing. Journal of Applied Psychology, 51, 300–304.CrossRefGoogle Scholar
  32. Spence, I., Yu, J. J., Feng, J., & Marshman, J. (2009). Women match men when learning a spatial skill. Journal of Experimental Psychology: Learning, Memory and Cognition, 35(4), 1097–1103.Google Scholar
  33. Spironelli, C., Tagliabue, M., & Angrilli, A. (2006). Asymmetrical hemispheric EEG activation evoked by stimulus position during Simon task. Neuroscience Letters, 399, 215–219.CrossRefGoogle Scholar
  34. Spironelli, C., Tagliabue, M., & Umilta, C. (2009). Response selection and attention orienting: A computational model of Simon effect asymmetries. Experimental Psychology, 56, 274–282.Google Scholar
  35. Sungur, H., & Boduroglu, A. (2012). Action video game players form more detailed representation of objects. Acta Psychologica, 139(2), 327–334.CrossRefGoogle Scholar
  36. Tagliabue, M., Vidotto, G., Zorzi, M., Umiltà, C., Altoè, G., Treccani, B., et al. (2007). The measurement of left/right asymmetries in the Simon effect: A fine grained analysis. Behavioral Research Methods, 39, 50–61.CrossRefGoogle Scholar
  37. Wascher, E., Schatz, U., Kuder, T., & Verleger, R. (2001). Validity and boundary condition of automatic response activation in the Simon task. Journal of Experimental Psychology: Human Perceptual Performance, 27, 731–751.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Andrew James Latham
    • 1
    • 2
    Email author
  • Christine Westermann
    • 3
    • 4
  • Lucy L. M. Patston
    • 3
    • 4
  • Nathan A. Ryckman
    • 3
    • 4
  • Lynette J. Tippett
    • 3
    • 4
  1. 1.Department of PhilosophyThe University of SydneySydneyAustralia
  2. 2.Brain and Mind CentreThe University of SydneySydneyAustralia
  3. 3.School of PsychologyThe University of AucklandAucklandNew Zealand
  4. 4.Centre for Brain ResearchThe University of AucklandAucklandNew Zealand

Personalised recommendations