Advertisement

Journal of Cognitive Enhancement

, Volume 2, Issue 2, pp 157–169 | Cite as

Increased Aerobic Fitness Is Associated with Cortical Thickness in Older Adults with Mild Vascular Cognitive Impairment

  • Lisanne F. ten Brinke
  • Chun Liang Hsu
  • John R. Best
  • Cindy K. Barha
  • Teresa Liu-AmbroseEmail author
Original Article

Abstract

Vascular cognitive impairment (VCI) results from cerebrovascular disease and is the second most common type of cognitive dysfunction. Sub-cortical ischemic vascular cognitive impairment (SIVCI) is the most common form of VCI. Current evidence suggests that increased or maintained cortical thickness might be one mechanism by which aerobic exercise preserves cognitive function in older adults. Whether this is also a potential pathway among older adults with SIVCI is unknown. Therefore, the aim of this secondary analysis of a 6-month proof-of-concept single-blinded randomized controlled trial of aerobic exercise was to investigate the associations between (1) aerobic-induced improvements in aerobic fitness capacity and change in cortical thickness in older adults with mild SIVCI; and (2) change in cortical thickness and changes in executive functions. This is a secondary analysis of neuroimaging data from a randomized controlled trial with 71 older adults with SIVCI who were randomly assigned to either a 6-month thrice-weekly aerobic training program or a 6-month nutrition program (i.e., control). Outcome measures were assessed at baseline and trial completion (i.e., 6 months). Aerobic fitness capacity was assessed with the 6-min walk test (6MWT). Magnetic resonance imaging data were acquired at both measurement points from 28 participants to look at changes in cortical thickness. Executive functions were assessed using (1) the Stroop test, (2) the trail making test (part A&B), and (3) the digit symbol substitution test (DSST). At trial completion, compared with the control group, participants in the aerobic training group showed significantly improved 6MWT performance (p = .037). Improved 6MWT performance was independently and significantly associated with increased change in cortical thickness, after controlling for baseline cortical thickness, baseline age, and baseline MoCA (p = .045). Specifically, change in 6MWT performance was significantly positively associated with change in the right superior temporal gyrus thickness (r = .557, p = .002). Maintenance of cortical thickness was independently and significantly associated with improved processing speed performance on the DSST over the 6-month trial, after controlling for baseline DSST performance, baseline age, and baseline MoCA (p = .014). Specifically, change in DSST performance was significantly positively associated with change in the right superior frontal thickness (r = .595, p = .002). Thus, a 6-month aerobic training program may promote cognitive outcomes in older adults with mild SIVCI by improving aerobic fitness capacity and maintaining cortical thickness.

Keywords

Randomized controlled trial Aerobic exercise Vascular cognitive impairment Cortical thickness Processing speed 

Notes

Authors’ Contributions

TLA was involved in study concept, design, and acquisition of data. TLA AND LTB were involved in preparation of the manuscript. LTB, TLA, CLH, JRB, and CKB were involved in writing and critically reviewing the manuscript. We thank Dr. Philip Lee for screening potential participants.

Funding

LTB is a Mitacs Accelerate Doctoral Trainee. CLH is an Alzheimer Society Research Program Doctoral Trainee. JRB is a Canadian Institutes of Health Research and Michael Smith Foundation of Health Research Postdoctoral Fellow. CKB is a Michael Smith Foundation for Health Research/Pacific Alzheimer Research Foundation Postdoctoral Fellow. TLA is a Canada Research Chair (Tier II) in Physical Activity, Mobility and Cognitive Neuroscience. This work was supported by Canadian Stroke Network and the Heart and Stroke Foundation of Canada to TLA and the Jack Brown and Family Alzheimer Research Foundation Society to TLA.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethics Approval

Ethics approval was provided by the University of British Columbia’s Clinical Research Ethics Board (H07-01160).

References

  1. Barha, C. K., Davis, J. C., Falck, R. S., Nagamatsu, L. S., & Liu-Ambrose, T. (2017). Sex differences in exercise efficacy to improve cognition: a systematic review and meta-analysis of randomized controlled trials in older humans. Frontiers in Neuroendocrinology, 46, 71–85.  https://doi.org/10.1016/j.yfrne.2017.04.002.CrossRefPubMedGoogle Scholar
  2. Barnes, D. E., & Yaffe, K. (2011). The projected effect of risk factor reduction on Alzheimer’s disease prevalence. Lancet Neurology, 10(9), 819–828.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Barrios, H., Narciso, S., Guerreiro, M., Maroco, J., Logsdon, R., & de Mendonca, A. (2013). Quality of life in patients with mild cognitive impairment. Aging & Mental Health, 17(3), 287–292.  https://doi.org/10.1080/13607863.2012.747083.CrossRefGoogle Scholar
  4. Borg, G. (1982a). Ratings of perceived exertion and heart rates during short-term cycle exercise and their use in a new cycling strength test. International Journal of Sports Medicine, 3(3), 153–158.CrossRefPubMedGoogle Scholar
  5. Borg, G. A. (1982b). Psychophysical bases of perceived exertion. Medicine and Science in Sports and Exercise, 14(5), 377–381.CrossRefPubMedGoogle Scholar
  6. Bowler, J. V. (2005). Vascular cognitive impairment. Journal of Neurology, Neurosurgery, and Psychiatry, 76(Suppl 5), v35–v44.  https://doi.org/10.1136/jnnp.2005.082313.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Brookmeyer, R., Johnson, E., Ziegler-Graham, K., & Arrighi, H. (2007). Forecasting the global burden of Alzheimer's disease. Alzheimer's Dementia, 3, 186–191.CrossRefPubMedGoogle Scholar
  8. Burr, J. F., Bredin, S. S., Faktor, M. D., & Warburton, D. E. (2011). The 6-minute walk test as a predictor of objectively measured aerobic fitness in healthy working-aged adults. The Physician and Sportsmedicine, 39(2), 133–139.  https://doi.org/10.3810/psm.2011.05.1904.CrossRefPubMedGoogle Scholar
  9. Burzynska, A. Z., Nagel, I. E., Preuschhof, C., Gluth, S., Backman, L., Li, S. C., … Heekeren, H. R. (2012). Cortical thickness is linked to executive functioning in adulthood and aging. Human Brain Mapping, 33(7), 1607–1620.  https://doi.org/10.1002/hbm.21311.
  10. Chee, M. W., Chen, K. H., Zheng, H., Chan, K. P., Isaac, V., Sim, S. K., … Ng, T. P. (2009). Cognitive function and brain structure correlations in healthy elderly east Asians. NeuroImage, 46(1), 257–269.  https://doi.org/10.1016/j.neuroimage.2009.01.036.
  11. Cotman, C. W., Berchtold, N. C., & Christie, L. A. (2007). Exercise builds brain health: key roles of growth factor cascades and inflammation. Trends in Neurosciences, 30(9), 464–472.  https://doi.org/10.1016/j.tins.2007.06.011.CrossRefPubMedGoogle Scholar
  12. Desikan, R. S., Segonne, F., Fischl, B., Quinn, B. T., Dickerson, B. C., Blacker, D., … Killiany, R. J. (2006). An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage, 31(3), 968–980.  https://doi.org/10.1016/j.neuroimage.2006.01.021.
  13. Dichgans, M., & Leys, D. (2017). Vascular cognitive impairment. Circulation Research, 120(3), 573–591.  https://doi.org/10.1161/CIRCRESAHA.116.308426.CrossRefPubMedGoogle Scholar
  14. Drexel, H., Saely, C. H., Langer, P., Loruenser, G., Marte, T., Risch, L., … Aczel, S. (2008). Metabolic and anti-inflammatory benefits of eccentric endurance exercise—a pilot study. European Journal of Clinical Investigation, 38(4), 218–226.Google Scholar
  15. Enright, P. L., McBurnie, M. A., Bittner, V., Tracy, R. P., McNamara, R., Arnold, A., … Cardiovascular Health, S. (2003). The 6-min walk test: a quick measure of functional status in elderly adults. Chest, 123(2), 387–398.Google Scholar
  16. Erickson, K., & Kramer, A. F. (2008). Exercise effects on cognitive and neural plasticity in older adults. British Journal of Sports Medicine.Google Scholar
  17. Erkinjuntti, T., Inzitari, D., Pantoni, L., Wallin, A., Scheltens, P., Rockwood, K., … Desmond, D. W. (2000). Research criteria for subcortical vascular dementia in clinical trials. Journal of Neural Transmission. Supplementum, 59, 23–30.Google Scholar
  18. Fischl, B., Salat, D. H., Busa, E., Albert, M., Dieterich, M., Haselgrove, C., … Dale, A. M. (2002). Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron, 33(3), 341–355.Google Scholar
  19. Fischl, B., Salat, D. H., van der Kouwe, A. J., Makris, N., Segonne, F., Quinn, B. T., & Dale, A. M. (2004a). Sequence-independent segmentation of magnetic resonance images. NeuroImage, 23(Suppl 1), S69–S84.  https://doi.org/10.1016/j.neuroimage.2004.07.016.CrossRefPubMedGoogle Scholar
  20. Fischl, B., Sereno, M. I., Tootell, R. B., & Dale, A. M. (1999). High-resolution intersubject averaging and a coordinate system for the cortical surface. Human Brain Mapping, 8(4), 272–284.CrossRefPubMedGoogle Scholar
  21. Fischl, B., van der Kouwe, A., Destrieux, C., Halgren, E., Segonne, F., Salat, D. H., … Dale, A. M. (2004b). Automatically parcellating the human cerebral cortex. Cerebral Cortex, 14(1), 11–22.Google Scholar
  22. Folstein, M. F., Folstein, S. E., & McHugh, P. R. (1975). “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12(3), 189–198.CrossRefPubMedGoogle Scholar
  23. Gorelick, P. B., Scuteri, A., Black, S. E., Decarli, C., Greenberg, S. M., Iadecola, C., … Anesthesia. (2011). Vascular contributions to cognitive impairment and dementia: a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke, 42(9), 2672–2713.  https://doi.org/10.1161/STR.0b013e3182299496.
  24. Graf, P., Uttl, B., & Tuokko, H. (1995). Color- and picture-word Stroop tests: performance changes in old age. Journal of Clinical and Experimental Neuropsychology, 17(3), 390–415.  https://doi.org/10.1080/01688639508405132.CrossRefPubMedGoogle Scholar
  25. Groll, D. L., To, T., Bombardier, C., & Wright, J. G. (2005). The development of a comorbidity index with physical function as the outcome. Journal of Clinical Epidemiology, 58(6), 595–602.  https://doi.org/10.1016/j.jclinepi.2004.10.018.CrossRefPubMedGoogle Scholar
  26. Hsu, C. L., Best, J. R., Davis, J. C., Nagamatsu, L. S., Wang, S., Boyd, L. A., … Liu-Ambrose, T. (2017). Aerobic exercise promotes executive functions and impacts functional neural activity among older adults with vascular cognitive impairment. British Journal of Sports Medicine.  https://doi.org/10.1136/bjsports-2016-096846.
  27. ICH Expert Working Group. (1999). ICH harmonised tripartite guideline. Statistical principles for clinical trials. International Conference on Harmonisation E9 expert working group. Stat Med, 18(15), 1905–1942.Google Scholar
  28. Johnson, J. L., Slentz, C. A., Houmard, J. A., Samsa, G. P., Duscha, B. D., Aiken, L. B., … Kraus, W. E. (2007). Exercise training amount and intensity effects on metabolic syndrome (from studies of a targeted risk reduction intervention through defined exercise). The American Journal of Cardiology, 100(12), 1759–1766.Google Scholar
  29. Jonasson, L. S., Nyberg, L., Kramer, A. F., Lundquist, A., Riklund, K., & Boraxbekk, C. J. (2016). Aerobic exercise intervention, cognitive performance, and brain structure: results from the physical influences on brain in aging (PHIBRA) study. Frontiers in Aging Neuroscience, 8, 336.  https://doi.org/10.3389/fnagi.2016.00336.PubMedGoogle Scholar
  30. Jouvent, E., Mangin, J. F., Porcher, R., Viswanathan, A., O'Sullivan, M., Guichard, J. P., … Chabriat, H. (2008). Cortical changes in cerebral small vessel diseases: a 3D MRI study of cortical morphology in CADASIL. Brain, 131(Pt 8), 2201–2208.  https://doi.org/10.1093/brain/awn129.
  31. Khan, K. M., Thompson, A. M., Blair, S. N., Sallis, J. F., Powell, K. E., Bull, F. C., & Bauman, A. E. (2012). Sport and exercise as contributors to the health of nations. Lancet, 380(9836), 59–64.CrossRefPubMedGoogle Scholar
  32. Lakka, T. A., & Laaksonen, D. E. (2007). Physical activity in prevention and treatment of the metabolic syndrome. Applied Physiology, Nutrition, and Metabolism, 32(1), 76–88.CrossRefPubMedGoogle Scholar
  33. LaMonte, M. J., Barlow, C. E., Jurca, R., Kampert, J. B., Church, T. S., & Blair, S. N. (2005). Cardiorespiratory fitness is inversely associated with the incidence of metabolic syndrome: a prospective study of men and women. Circulation, 112(4), 505–512.CrossRefPubMedGoogle Scholar
  34. Lezak, M. D. (1995). Neuropsychological assessment (3rd ed.). New York: Oxford University Press.Google Scholar
  35. Lista, I., & Sorrentino, G. (2010). Biological mechanisms of physical activity in preventing cognitive decline. Cellular and Molecular Neurobiology, 30(4), 493–503.  https://doi.org/10.1007/s10571-009-9488-x.CrossRefPubMedGoogle Scholar
  36. Liu-Ambrose, T., Best, J. R., Davis, J. C., Eng, J. J., Lee, P. E., Jacova, C., … Hsiung, G. R. (2016a). Aerobic exercise and vascular cognitive impairment: a randomized controlled trial. Neurology, 87(20), 2082–2090. doi: https://doi.org/10.1212/WNL.0000000000003332.
  37. Liu-Ambrose, T., Best, J. R., Davis, J. C., Eng, J. J., Lee, P. E., Jacova, C., … Hsiung, G. R. (2016b). Aerobic exercise and vascular cognitive impairment: a randomized controlled trial. Neurology.  https://doi.org/10.1212/WNL.0000000000003332.
  38. Liu-Ambrose, T., Eng, J. J., Boyd, L. A., Jacova, C., Davis, J. C., Bryan, S., … Hsiung, G. Y. (2010). Promotion of the mind through exercise (PROMoTE): a proof-of-concept randomized controlled trial of aerobic exercise training in older adults with vascular cognitive impairment. BMC Neurology, 10, 14.  https://doi.org/10.1186/1471-2377-10-14.
  39. Moorhouse, P., & Rockwood, K. (2008). Vascular cognitive impairment: current concepts and clinical developments. The Lancet Neurology, 7(3), 246–255.CrossRefPubMedGoogle Scholar
  40. Nasreddine, Z. S., Phillips, N. A., Bedirian, V., Charbonneau, S., Whitehead, V., Collin, I., … Chertkow, H. (2005). The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. Journal of the American Geriatrics Society, 53(4), 695–699.Google Scholar
  41. O'Brien, J. T., Erkinjuntti, T., Reisberg, B., Roman, G., Sawada, T., Pantoni, L., … Gorelick, P. B. (2003). Vascular cognitive impairment. The Lancet Neurology, 2(2), 89–98.Google Scholar
  42. Persinger, R., Foster, C., Gibson, M., Fater, D. C., & Porcari, J. P. (2004). Consistency of the talk test for exercise prescription. Medicine and Science in Sports and Exercise, 36(9), 1632–1636.PubMedGoogle Scholar
  43. Prakash, R. S., Voss, M. W., Erickson, K. I., & Kramer, A. F. (2015). Physical activity and cognitive vitality. Annual Review of Psychology, 66, 769–797.  https://doi.org/10.1146/annurev-psych-010814-015249.CrossRefPubMedGoogle Scholar
  44. Raschetti, R., Albanese, E., Vanacore, N., & Maggini, M. (2007). Cholinesterase inhibitors in mild cognitive impairment: a systematic review of randomised trials. PLoS Medicine, 4(11), e338.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Reiter, K., Nielson, K. A., Smith, T. J., Weiss, L. R., Alfini, A. J., & Smith, J. C. (2015). Improved cardiorespiratory fitness is associated with increased cortical thickness in mild cognitive impairment. Journal of the International Neuropsychological Society, 21(10), 757–767.  https://doi.org/10.1017/S135561771500079X.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Reuter, M., & Fischl, B. (2011). Avoiding asymmetry-induced bias in longitudinal image processing. NeuroImage, 57(1), 19–21.  https://doi.org/10.1016/j.neuroimage.2011.02.076.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Reuter, M., Rosas, H. D., & Fischl, B. (2010). Highly accurate inverse consistent registration: a robust approach. NeuroImage, 53(4), 1181–1196.  https://doi.org/10.1016/j.neuroimage.2010.07.020.CrossRefPubMedPubMedCentralGoogle Scholar
  48. Reuter, M., Schmansky, N. J., Rosas, H. D., & Fischl, B. (2012). Within-subject template estimation for unbiased longitudinal image analysis. NeuroImage, 61(4), 1402–1418.  https://doi.org/10.1016/j.neuroimage.2012.02.084.CrossRefPubMedPubMedCentralGoogle Scholar
  49. Righart, R., Duering, M., Gonik, M., Jouvent, E., Reyes, S., Herve, D., … Dichgans, M. (2013). Impact of regional cortical and subcortical changes on processing speed in cerebral small vessel disease. Neuroimage Clin, 2, 854–861.  https://doi.org/10.1016/j.nicl.2013.06.006.
  50. Roman, G. C., Erkinjuntti, T., Wallin, A., Pantoni, L., & Chui, H. C. (2002). Subcortical ischaemic vascular dementia. Lancet Neurology, 1(7), 426–436.CrossRefPubMedGoogle Scholar
  51. Segonne, F., Dale, A. M., Busa, E., Glessner, M., Salat, D., Hahn, H. K., & Fischl, B. (2004). A hybrid approach to the skull stripping problem in MRI. NeuroImage, 22(3), 1060–1075.  https://doi.org/10.1016/j.neuroimage.2004.03.032.CrossRefPubMedGoogle Scholar
  52. Smith, P. J., Blumenthal, J. A., Hoffman, B. M., Cooper, H., Strauman, T. A., Welsh-Bohmer, K., … Sherwood, A. (2010). Aerobic exercise and neurocognitive performance: a meta-analytic review of randomized controlled trials. Psychosomatic Medicine, 72(3), 239–252.  https://doi.org/10.1097/PSY.0b013e3181d14633.
  53. Spreen, O., & Strauss, E. (1998). A compendium of neurological tests (2nd ed.). New York: Oxford University Press, Inc..Google Scholar
  54. Stewart, K. J., Bacher, A. C., Turner, K., Lim, J. G., Hees, P. S., Shapiro, E. P., … Ouyang, P. (2005). Exercise and risk factors associated with metabolic syndrome in older adults. American Journal of Preventive Medicine, 28(1), 9–18.Google Scholar
  55. Thong, J. Y., Du, J., Ratnarajah, N., Dong, Y., Soon, H. W., Saini, M., … Qiu, A. (2014). Abnormalities of cortical thickness, subcortical shapes, and white matter integrity in subcortical vascular cognitive impairment. Human Brain Mapping, 35(5), 2320–2332.  https://doi.org/10.1002/hbm.22330.
  56. Verdelho, A., Madureira, S., Ferro, J. M., Baezner, H., Blahak, C., Poggesi, A., et al. (2012). Physical activity prevents progression for cognitive impairment and vascular dementia: results from the LADIS (leukoaraiosis and disability) study. Stroke, 43(12), 3331–3335.  https://doi.org/10.1161/STROKEAHA.112.661793.CrossRefPubMedGoogle Scholar
  57. Vermeer, S. E., Longstreth Jr., W. T., & Koudstaal, P. J. (2007). Silent brain infarcts: a systematic review. Lancet Neurology, 6(7), 611–619.  https://doi.org/10.1016/S1474-4422(07)70170-9.CrossRefPubMedGoogle Scholar
  58. Vivar, C., Potter, M. C., & van Praag, H. (2013). All about running: synaptic plasticity, growth factors and adult hippocampal neurogenesis. Current Topics in Behavioral Neurosciences, 15, 189–210.  https://doi.org/10.1007/7854_2012_220.CrossRefPubMedPubMedCentralGoogle Scholar
  59. Vivar, C., & van Praag, H. (2017). Running changes the brain: the long and the short of it. Physiology (Bethesda), 32(6), 410–424.  https://doi.org/10.1152/physiol.00017.2017.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Lisanne F. ten Brinke
    • 1
  • Chun Liang Hsu
    • 1
  • John R. Best
    • 1
  • Cindy K. Barha
    • 1
  • Teresa Liu-Ambrose
    • 1
    Email author
  1. 1.Aging, Mobility, and Cognitive Neuroscience Laboratory, Department of Physical Therapy, Djavad Mowafaghian Centre for Brain HealthUniversity of British ColumbiaVancouverCanada

Personalised recommendations