Journal of Cognitive Enhancement

, Volume 1, Issue 4, pp 478–490 | Cite as

Comparing the Transfer Effects of Simultaneously and Sequentially Combined Aerobic Exercise and Cognitive Training in Older Adults

  • Laurence Lai
  • Halina Bruce
  • Louis Bherer
  • Maxime Lussier
  • Karen Z. H. LiEmail author
Original Article


It is known that both cognitive training and aerobic exercise training can independently improve cognitive performance in older adults. Combined multimodality (cognitive and aerobic) training has shown promise in producing significantly more training gains in older adults than pure physical exercise and control; however, results are mixed. To address these mixed results and elucidate the efficacy of different schedules of multimodal training, we compared simultaneous and sequential formats. To this end, 42 older adults (M = 68.05 years) participated in 12 sessions of same-day multimodal training and were randomly assigned to either the simultaneous (concurrent cognitive dual-task and aerobic exercise) or sequential training group (cognitive dual-task followed by aerobic exercise). Both groups showed significant improvement on measures of processing speed and verbal memory following training, with the sequential group showing a significant training advantage on working memory. Motivation to engage in cognitive effort moderated the training gains in verbal memory, and baseline aerobic fitness moderated the magnitude of training gains in response inhibition negatively. The current findings demonstrate the selective effects of training format on cognitive outcomes, in line with the principle of neural overlap, which suggests that improvements should occur to the extent that the trained and untrained tasks share underlying neural pathways. The results also underscore the importance of considering individual difference factors in cognitive training studies.


Aging Multimodal intervention Cognitive training Exercise training Executive functions Moderators 


  1. Baddeley, A. (1986). Working memory. New York: Oxford University Press.Google Scholar
  2. Baer, L. H., Tabri, N., Blair, M., Bye, D., Li, K. Z., & Pushkar, D. (2012). Longitudinal associations of need for cognition, cognitive activity, and depressive symptomatology with cognitive function in recent retirees. The Journals of Gerontology Series B: Psychological Sciences and Social Sciences, 68(5), 655–664.CrossRefGoogle Scholar
  3. Banich, M. T., Milham, M. P., Atchley, R., Cohen, N. J., Webb, A., Wszalek, T., & Magin, R. (2000). fMRI studies of Stroop tasks reveal unique roles of anterior and posterior brain systems in attentional selection. Journal of Cognitive Neuroscience, 12(6), 988–1000.CrossRefPubMedGoogle Scholar
  4. Baniqued, P. L., Allen, C. M., Kranz, M. B., Johnson, K., Sipolins, A., Dickens, C., & Kramer, A. F. (2015). Working memory, reasoning, and task switching training: transfer effects, limitations, and great expectations? PLoS One, 10(11), e0142169.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bherer, L., Erickson, K. I., & Liu-Ambrose, T. (2013). A review of the effects of physical activity and exercise on cognitive and brain functions in older adults. Journal of Aging Research, :657508.Google Scholar
  6. Bherer, L., Kramer, A. F., Peterson, M. S., Colcombe, S., Erickson, K., & Becic, E. (2005). Training effects on dual-task performance: are there age-related differences in plasticity of attentional control? Psychology and Aging, 20(4), 695.CrossRefPubMedGoogle Scholar
  7. Bherer, L., Kramer, A. F., Peterson, M. S., Colcombe, S., Erickson, K., & Becic, E. (2006). Testing the limits of cognitive plasticity in older adults: application to attentional control. Acta Psychologica, 123, 261–278.CrossRefPubMedGoogle Scholar
  8. Bherer, L., Kramer, A. F., Peterson, M. S., Colcombe, S., Erickson, K., & Becic, E. (2008). Transfer effects in task-set cost and dual-task cost after dual-task training in older and younger adults: further evidence for cognitive plasticity in attentional control in late adulthood. Experimental Aging Research, 34(3), 188–219.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Borg, G. (1982). Ratings of perceived exertion and heart rates during short-term cycle exercise and their use in a new cycling strength test. International Journal of Sports Medicine, 3(3), 153–158.CrossRefPubMedGoogle Scholar
  10. Braver, T. S., Cohen, J. D., Nystrom, L. E., Jonides, J., Smith, E. E., & Noll, D. C. (1997). A parametric study of prefrontal cortex involvement in human working memory. NeuroImage, 5(1), 49–62.CrossRefPubMedGoogle Scholar
  11. Brehmer, Y., Westerberg, H., & Bäckman, L. (2012). Working-memory training in younger and older adults: training gains, transfer, and maintenance. Frontiers in Human Neuroscience, 6, 1–7.CrossRefGoogle Scholar
  12. Bruce, H., Lai, L., Lussier, M., Bherer, & Li, K. Z. H. (2017). The effects of combined cognitive and exercise training on dual-task balance and listening. Manuscript in preparation.Google Scholar
  13. Burzynska, A. Z., Jiao, Y., Knecht, A. M., Fanning, J., Awick, E. A., Chen, T., & Kramer, A. F. (2017). White matter integrity declined over 6-months, but dance intervention improved integrity of the fornix of older adults. Frontiers in Aging Neuroscience, 9(59).Google Scholar
  14. Burzynska, A. Z., Wong, C. N., Voss, M. W., Cooke, G. E., Gothe, N. P., Fanning, J., & Kramer, A. F. (2015). Physical activity is linked to greater moment-to-moment variability in spontaneous brain activity in older adults. PLoS One, 10(8), e0134819.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Cacioppo, J. T., Petty, R. E., Feinstein, J. A., & Jarvis, W. B. G. (1996). Dispositional differences in cognitive motivation: the life and times of individuals varying in need for cognition. Psychological Bulletin, 119(2), 197–253.CrossRefGoogle Scholar
  16. Chang, Y. K., Labban, J. D., Gapin, J. I., & Etnier, J. L. (2012). The effects of acute exercise on cognitive performance: a meta-analysis. Brain Research, 1453, 87–101.CrossRefPubMedGoogle Scholar
  17. Colcombe, S. J., Erickson, K. I., Scalf, P. E., Kim, J. S., Prakash, R., McAuley, E., & Kramer, A. F. (2006). Aerobic exercise training increases brain volume in aging humans. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 61(11), 1166–1170.CrossRefGoogle Scholar
  18. Colcombe, S., & Kramer, A. F. (2003). Fitness effects on the cognitive function of older adults a meta-analytic study. Psychological Science, 14(2), 125–130.CrossRefPubMedGoogle Scholar
  19. Dahlin, E., Neely, A. S., Larsson, A., Bäckman, L., & Nyberg, L. (2008). Transfer of learning after updating training mediated by the striatum. Science, 320(5882), 1510–1512.CrossRefPubMedGoogle Scholar
  20. Desjardins-Crépeau, L., Berryman, N., Fraser, S. A., Vu, T. T. M., Kergoat, M. J., Li, K. Z., & Bherer, L. (2016). Effects of combined physical and cognitive training on fitness and neuropsychological outcomes in healthy older adults. Clinical Interventions in Aging, 11, 1287–1299.CrossRefPubMedPubMedCentralGoogle Scholar
  21. D’Esposito, M., Postle, B. R., & Rypma, B. (2000). Prefrontal cortical contributions to working memory: evidence from event-related fMRI studies. Experimental Brain Research (133), 3–11.Google Scholar
  22. Duzel, E., van Praag, H., & Sendtner, M. (2016). Can physical exercise in old age improve memory and hippocampal function? Brain, 139(3), 662–673.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Erickson, K. I., Colcombe, S. J., Wadhwa, R., Bherer, L., Peterson, M. S., Scalf, P. E., & Kramer, A. F. (2007a). Training-induced functional activation changes in dual-task processing: an FMRI study. Cerebral Cortex, 17(1), 192–204.CrossRefPubMedGoogle Scholar
  24. Erickson, K. I., Colcombe, S. J., Wadhwa, R., Bherer, L., Peterson, M. S., Scalf, P. E., & Kramer, A. F. (2007b). Training-induced plasticity in older adults: effects of training on hemispheric asymmetry. Neurobiology of Aging, 28(2), 272–283.CrossRefPubMedGoogle Scholar
  25. Erickson, K. I., & Kramer, A. F. (2009). Aerobic exercise effects on cognitive and neural plasticity in older adults. British Journal of Sports Medicine, 43(1), 22–24.CrossRefPubMedGoogle Scholar
  26. Erickson, K. I., Voss, M. W., Prakash, R. S., Basak, C., Szabo, A., Chaddock, L., & Wojcicki, T. R. (2011). Exercise training increases size of hippocampus and improves memory. Proceedings of the National Academy of Sciences, 108(7), 3017–3022.CrossRefGoogle Scholar
  27. Hertzog, C., Kramer, A. F., Wilson, R. S., & Lindenberger, U. (2008). Enrichment effects on adult cognitive development: can the functional capacity of older adults be preserved and enhanced? Psychological Science in the Public Interest, 9(1), 1–65.CrossRefPubMedGoogle Scholar
  28. Hess, T. M., Emery, L., & Neupert, S. D. (2012). Longitudinal relationships between resources, motivation, and functioning. The Journals of Gerontology Series B: Psychological Sciences and Social Sciences, 67(3), 299–308.CrossRefGoogle Scholar
  29. Hiyamizu, M., Morioka, S., Shomoto, K., & Shimada, T. (2012). Effects of dual task balance training on dual task performance in elderly people: a randomized controlled trial. Clinical Rehabilitation, 26(1), 58–67.CrossRefPubMedGoogle Scholar
  30. Jones, N. L., Makrides, L., Hitchcock, C., Chypchar, T., & McCartney, N. (1985). Normal standards for an incremental progressive cycle ergometer test 1–3. American Review of Respiratory Disease, 131(5), 700–708.PubMedGoogle Scholar
  31. Kane, M. J., & Engle, R. W. (2002). The role of prefrontal cortex in working-memory capacity, executive attention, and general fluid intelligence: an individual-differences perspective. Psychonomic Bulletin & Review, 9(4), 637–671.CrossRefGoogle Scholar
  32. Kramer, A. F. K., Erickson, K. I., & Colcombe, S. J. (2006). Exercise, cognition, and the aging brain. Journal of Applied Physiology 101(4), 1237–1242.Google Scholar
  33. Labelle, V., Bosquet, L., Mekary, S., & Bherer, L. (2013). Decline in executive control during acute bouts of exercise as a function of exercise intensity and fitness level. Brain and Cognition, 81(1), 10–17.CrossRefPubMedGoogle Scholar
  34. Lampit, A., Hallock, H., & Valenzuela, M. (2014). Computerized cognitive training in cognitively healthy older adults: a systematic review and meta-analysis of effect modifiers. PLoS Medicine, 11(11), e1001756.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Lezak, M. D. (2004). Neuropsychological assessment. USA: Oxford University Press.Google Scholar
  36. Li, K. Z. H., Lindenberger, U., Freund, A. M., & Baltes, P. B. (2001). Walking while memorizing: age-related differences in compensatory behavior. Psychological Science, 12(3), 230–237.CrossRefPubMedGoogle Scholar
  37. Li, K. Z. H., Krampe, R. T., & Bondar, A. (2005). An ecological approach to studying aging and dual-task performance. In R. W. Engle, U. Sedek, & D. N. McIntosh (Eds.), Cognitive limitations in aging and psychopathology (pp. 190–218). USA: Cambridge University Press.CrossRefGoogle Scholar
  38. Li, K. Z. H., Roudaia, E., Lussier, M., Bherer, L., Leroux, A., & McKinley, P. A. (2010). Benefits of cognitive dual-task training on balance performance in healthy older adults. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 65(12), 1344–1352.CrossRefGoogle Scholar
  39. Lussier, M., Brouillard, P., & Bherer, L. (2015). Limited benefits of heterogeneous dual-task training on transfer effects in older adults. The Journals of Gerontology Series B: Psychological Sciences and Social Sciences, gbv105(0), 1–13.Google Scholar
  40. Lussier, M., Gagnon, C., & Bherer, L. (2016). An investigation of response and stimulus modality transfer effects after dual-task training in younger and older adults. Training-induced Cognitive and Neural Plasticity, 118(6), 1–11.Google Scholar
  41. Lustig, C., Shah, P., Seidler, R., & Reuter-Lorenz, P. A. (2009). Aging, training, and the brain: a review and future directions. Neuropsychology Review, 19(4), 504–522.CrossRefPubMedPubMedCentralGoogle Scholar
  42. MacLeod, C. M. (1991). Half a century of research on the Stroop effect: an integrative review. Psychological Bulletin 109(2), 163–203.Google Scholar
  43. Mitrushina, M., & Satz, P. (1991). Effect of repeated administration of a neuropsychological battery in the elderly. Journal of Clinical Psychology, 47(6), 790–801.CrossRefPubMedGoogle Scholar
  44. Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A., & Wager, T. D. (2000). The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: a latent variable analysis. Cognitive Psychology, 41(1), 49–100.CrossRefPubMedGoogle Scholar
  45. Morrison, A. B., & Chein, J. M. (2011). Does working memory training work? The promise and challenges of enhancing cognition by training working memory. Psychonomic Bulletin & Review, 18(1), 46–60.CrossRefGoogle Scholar
  46. Nasreddine, Z. S., Phillips, N. A., Bédirian, V., Charbonneau, S., Whitehead, V., Collin, I., & Chertkow, H. (2005). The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. Journal of the American Geriatrics Society, 53(4), 695–699.CrossRefPubMedGoogle Scholar
  47. Nouchi, R., Taki, Y., Takeuchi, H., Sekiguchi, A., Hashizume, H., Nozawa, T., & Kawashima, R. (2014). Four weeks of combination exercise training improved executive functions, episodic memory, and processing speed in healthy elderly people: evidence from a randomized controlled trial. Age, 36(2), 787–799.CrossRefPubMedGoogle Scholar
  48. Oswald, W. D., Gunzelmann, T., Rupprecht, R., & Hagen, B. (2006). Differential effects of single versus combined cognitive and physical training with older adults: the SimA study in a 5-year perspective. European Journal of Ageing, 3(4), 179–192.CrossRefPubMedPubMedCentralGoogle Scholar
  49. Park, D. C., Lodi-Smith, J., Drew, L., Haber, S., Hebrank, A., Bischof, G. N., & Aamodt, W. (2014). The impact of sustained engagement on cognitive function in older adults: the synapse project. Psychological Science, 25(1), 103–112.CrossRefPubMedGoogle Scholar
  50. Randolph, C., Tierney, M. C., Mohr, E., & Chase, T. N. (1998). The Repeatable Battery for the Assessment of Neuropsychological Status (RBANS): preliminary clinical validity. Journal of Clinical and Experimental Neuropsychology, 20(3), 310–319.CrossRefPubMedGoogle Scholar
  51. Rahe, J., Petrelli, A., Kaesberg, S., Fink, G. R., Kessler, J., & Kalbe, E. (2015). Effects of cognitive training with additional physical activity compared to pure cognitive training in healthy older adults. Clinical Interventions in Aging, 10, 297–310.CrossRefPubMedPubMedCentralGoogle Scholar
  52. Rhodes, R. E., & Katz, B. (2017). Working memory plasticity and aging. Psychology and Aging, 32(1), 51–59.CrossRefPubMedGoogle Scholar
  53. Shatil, E. (2013). Does combined cognitive training and physical activity training enhance cognitive abilities more than either alone? A four-condition randomized controlled trial among healthy older adults. Frontiers in Aging Neuroscience, 5(8), 8–20.PubMedPubMedCentralGoogle Scholar
  54. Smith, P. J., Blumenthal, J. A., Hoffman, B. M., Cooper, H., Strauman, T. A., Welsh-Bohmer, K., & Sherwood, A. (2010). Aerobic exercise and neurocognitive performance: a meta-analytic review of randomized controlled trials. Psychosomatic Medicine, 72(3), 239.CrossRefPubMedPubMedCentralGoogle Scholar
  55. Steffener, J., Habeck, C., O'Shea, D., Razlighi, Q., Bherer, L., & Stern, Y. (2016). Differences between chronological and brain age are related to education and self-reported physical activity. Neurobiology of Aging, 40, 138–144.CrossRefPubMedPubMedCentralGoogle Scholar
  56. Stine-Morrow, E. A., Payne, B. R., Roberts, B. W., Kramer, A. F., Morrow, D. G., Payne, L., & Janke, M. C. (2014). Training versus engagement as paths to cognitive enrichment with aging. Psychology and Aging, 29(4), 891.CrossRefPubMedPubMedCentralGoogle Scholar
  57. Theill, N., Schumacher, V., Adelsberger, R., Martin, M., & Jäncke, L. (2013). Effects of simultaneously performed cognitive and physical training in older adults. BMC Neuroscience, 14(1), 103–117.CrossRefPubMedPubMedCentralGoogle Scholar
  58. Thomas, S., Reading, J., & Shephard, R. J. (1992). Revision of the Physical Activity Readiness Questionnaire (PAR-Q). Canadian Journal of Sport Sciences, 17(4), 338–345.PubMedGoogle Scholar
  59. Verhaeghen, P., Steitz, D. W., Sliwinski, M. J., & Cerella, J. (2003). Aging and dual-task performance: a meta-analysis. Psychology and Aging, 18(3), 443–460.CrossRefPubMedGoogle Scholar
  60. Voss, M. W., Heo, S., Prakash, R. S., Erickson, K. I., Alves, H., Chaddock, L., & Gothe, N. (2013). The influence of aerobic fitness on cerebral white matter integrity and cognitive function in older adults: Results of a one-year exercise intervention. Human Brain Mapping, 34(11), 2972–2985.CrossRefPubMedGoogle Scholar
  61. Wechsler, D. (2008). Wechsler Adult Intelligence Scale: WAIS-IV technical and interpretive manual. San Antonio, TX: The Psychological Corporation.Google Scholar
  62. Woollacott, M., & Shumway-Cook, A. (2002). Attention and the control of posture and gait: a review of an emerging area of research. Gait & Posture, 16(1), 1–14.CrossRefGoogle Scholar
  63. Zelinski, E. M. (2009). Far transfer in cognitive training of older adults. Restorative Neurology and Neuroscience, 27(5), 455–471.PubMedPubMedCentralGoogle Scholar
  64. Zhu, X., Yin, S., Lang, M., He, R., & Li, J. (2016). The more the better? A meta-analysis on effects of combined cognitive and physical intervention on cognition in healthy older adults. Ageing Research Reviews, 31, 67–79.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of PsychologyConcordia UniversityQCCanada
  2. 2.Centre for Research in Human DevelopmentConcordia UniversityMontrealCanada
  3. 3.PERFORM CentreConcordia UniversityMontrealCanada
  4. 4.Departement of MedicineUniversité de MontréalMontrealCanada
  5. 5.Centre de Recherche de l’Institut Universitaire de Gériatrie de MontréalMontrealCanada
  6. 6.Montreal Heart InstituteMontrealCanada
  7. 7.School of Rehabilitation Sciences MedicineUniversité de MontréalMontrealCanada

Personalised recommendations