Journal of Cognitive Enhancement

, Volume 1, Issue 4, pp 559–575 | Cite as

Systematic Literature Review and Meta-Analysis of Commercially Available Computerized Cognitive Training Among Older Adults

  • Amber M. TetlowEmail author
  • Jerri D. Edwards
Original Article


Researchers have explored a variety of interventions to improve cognition among older adults. One of which is computerized cognitive training programs. The number of commercially available, cognitive training programs has increased greatly, but scientists debate their value. The purposes of this systematic literature review and meta-analysis were to (1) evaluate the efficacy of commercially available, computerized cognitive training programs to improve cognition in older adults and (2) examine far transfer of training to untrained tasks relevant to everyday functioning. Articles were reviewed if the study (a) included a sample of adults aged 55 and older, (b) used a commercially available, computerized cognitive training program, (c) was a randomized controlled trial, (d) measured cognition as an outcome, and (e) included a sample that was free from health conditions affecting cognitive function (e.g., cancer, stroke, psychiatric conditions, or traumatic brain injury). Effect sizes were calculated using random effect models to determine cognitive training effects for various cognitive domains and far transfer tasks. There were significant small to medium training effects for the cognitive domains of attention (d = 0.651, p < .001), processing speed (d = 0.294, p = .002), and visuospatial memory (d = 0.252, p = 0.016). There was also evidence of far transfer to self-reported measures of everyday function (d = 0.277, p < 0.001). Commercially available computerized cognitive training programs may improve certain cognitive abilities among older adults, who also report improvement on tasks relevant to their everyday lives.


Aging Cognitive training Brain fitness Brain games 


References marked with an asterisk indicate studies included in the meta-analysis.

  1. Abikoff, H., Alvir, J., Hong, G., Sukoff, R., Orazio, J., Solomon, S., & Saravay, S. (1987). Logical memory subtest of the Wechsler memory scale: Age and education norms and alternate-form reliability of two scoring systems. Journal of Clinical and Experimental Neuropsychology, 9(4), 435–448.CrossRefPubMedGoogle Scholar
  2. Anderson, S., White-Schwoch, T., Parbery-Clark, A., & Kraus, N. (2013). Reversal of age-related neural timing delays with training. Proceedings of the National Academy of Sciences, 110(11), 4357–4362.CrossRefGoogle Scholar
  3. Arenberg, D. (1978). Differences and changes with age in the Benton visual retention test. Journal of Gerontology, 33(4), 534–540.CrossRefPubMedGoogle Scholar
  4. Axelrod, B. N., Goldman, R. S., & Woodard, J. L. (1992). Interrater reliability in scoring the Wisconsin card sorting test. The Clinical Neuropsychologist, 6(2), 143–155.CrossRefPubMedGoogle Scholar
  5. *Ball, K., Berch, D. B., Helmers, K. F., Jobe, J. B., Leveck, M. D., Marsiske, M., … Tennstedt, S. L. (2002). Effects of cognitive training interventions with older adults: a randomized controlled trial. JAMA, 288(18), 2271–2281.Google Scholar
  6. Ball, K., Edwards, J. D., & Ross, L. A. (2007). The impact of speed of processing training on cognitive and everyday functions. The Journals of Gerontology Series B: Psychological Sciences and Social Sciences, 62(Special Issue 1), 19–31.CrossRefGoogle Scholar
  7. *Ballesteros, S., Prieto, A., Mayas, J., Toril, P., Pita, C., Ponce de León, L., … Waterworth, J. (2014). Brain training with non-action video games enhances aspects of cognition in older adults: a randomized controlled trial. Frontiers in Aging Neuroscience, 6, 277.Google Scholar
  8. Barnett, S. M., & Ceci, S. J. (2002). When and where do we apply what we learn?: A taxonomy for far transfer. Psychological Bulletin, 128(4), 612–637.CrossRefPubMedGoogle Scholar
  9. Berry, D. T. R., Allen, R. S., & Schmitt, F. A. (1991). Rey-Osterrieth complex figure: Psychometric characteristics in a geriatric sample. The Clinical Neuropsychologist, 5(2), 143–153.CrossRefGoogle Scholar
  10. Berry, A. S., Zanto, T. P., Clapp, W. C., Hardy, J. L., Delahunt, P. B., Mahncke, H. W., & Gazzaley, A. (2010). The influence of perceptual training on working memory in older adults. PLoS One, 5(7), e11537. Scholar
  11. Birren, J. E., Woods, A. M., & Williams, M. V. (1979). Speed of behavior as an indicator of age changes and the integrity of the nervous system. Brain function in old age (pp. 10–44): Springer.
  12. Boman, I.-L., Lindstedt, M., Hemmingsson, H., & Bartfai, A. (2004). Cognitive training in home environment. Brain Injury, 18(10), 985–995.CrossRefPubMedGoogle Scholar
  13. Borenstein, M., Hedges, L. V., Higgins, J., & Rothstein, H. R. (2010). A basic introduction to fixed-effect and random-effects models for meta-analysis. Research Synthesis Methods, 1(2), 97–111.CrossRefPubMedGoogle Scholar
  14. Braak, H., Thal, D. R., Ghebremedhin, E., & Del Tredici, K. (2011). Stages of the pathologic process in Alzheimer disease: Age categories from 1 to 100 years. Journal of Neuropathology and Experimental Neurology, 70(11), 960–969. Scholar
  15. *Brehmer, Y., Rieckmann, A., Bellander, M., Westerberg, H., Fischer, H., & Bäckman, L. (2011). Neural correlates of training-related working-memory gains in old age. Neuroimage, 58(4), 1110–1120.Google Scholar
  16. *Brehmer, Y., Westerberg, H., & Bäckman, L. (2012). Working-memory training in younger and older adults: training gains, transfer, and maintenance. Training-induced cognitive and neural plasticity, 72.Google Scholar
  17. Bridger, R. S., Johnsen, S. Å. K., & Brasher, K. (2013). Psychometric properties of the cognitive failures questionnaire†. Ergonomics, 56(10), 1515–1524.CrossRefPubMedGoogle Scholar
  18. Buitenweg, J. I. V., Murre, J. M. J., & Ridderinkhof, K. R. (2012). Brain training in progress: A review of trainability in healthy seniors. Frontiers in Human Neuroscience, 6.Google Scholar
  19. Buschke, H. (1973). Selective reminding for analysis of memory and learning. Journal of Verbal Learning and Verbal Behavior, 12(5), 543–550.CrossRefGoogle Scholar
  20. Buschke, H., & Fuld, P. A. (1974). Evaluating storage, retention, and retrieval in disordered memory and learning. Neurology, 24(11), 1019–1019.CrossRefPubMedGoogle Scholar
  21. Centers for Disease Control and Prevention. (2003). Trends in aging--United States and worldwide. MMWR. Morbidity and Mortality Weekly Report, 52(6), 101.Google Scholar
  22. Chein, J. M., & Morrison, A. B. (2010). Expanding the mind’s workspace: Training and transfer effects with a complex working memory span task. Psychonomic Bulletin & Review, 17(2), 193–199.CrossRefGoogle Scholar
  23. Cohen, J. (1988). Statistical power analysis for the behavior science. Lawrance Eribaum Association. Cambridge: Academic Press Books - Elsevier.Google Scholar
  24. Coull, J. T., Frith, C. D., Frackowiak, R. S. J., & Grasby, P. M. (1996). A fronto-parietal network for rapid visual information processing: A PET study of sustained attention and working memory. Neuropsychologia, 34(11), 1085–1095.CrossRefPubMedGoogle Scholar
  25. Covinsky, K. E., Palmer, R. M., Fortinsky, R. H., Counsell, S. R., Stewart, A. L., Kresevic, D., … Landefeld, C. S. (2003). Loss of independence in activities of daily living in older adults hospitalized with medical illnesses: Increased vulnerability with age. Journal of the American Geriatrics Society, 51(4), 451–458.Google Scholar
  26. Deouell, L. Y., Sacher, Y., & Soroker, N. (2005). Assessment of spatial attention after brain damage with a dynamic reaction time test. Journal of the International Neuropsychological Society, 11(06), 697–707.CrossRefPubMedGoogle Scholar
  27. Deshpande, P. R., Rajan, S., Sudeepthi, B. L., & Nazir, C. P. A. (2011). Patient-reported outcomes: A new era in clinical research. Perspectives in Clinical Research, 2(4), 137.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Diehl, M., Willis, S. L., & Schaie, K. W. (1995). Everyday problem solving in older adults: Observational assessment and cognitive correlates. Psychology and Aging, 10(3), 478.CrossRefPubMedGoogle Scholar
  29. Djernes, J. K. (2006). Prevalence and predictors of depression in populations of elderly: A review. Acta Psychiatrica Scandinavica, 113(5), 372–387.CrossRefPubMedGoogle Scholar
  30. Dujovne, B. E., & Levy, B. I. (1971). The psychometric structure of the Wechsler memory scale. Journal of Clinical Psychology, 27(3), 351–354.CrossRefPubMedGoogle Scholar
  31. Dulay, M. F., Schefft, B. K., Marc Testa, S., Fargo, J. D., Privitera, M., & Yeh, H. (2002). What does the family pictures subtest of the Wechsler memory scale-III measure? Insight gained from patients evaluated for epilepsy surgery. The Clinical Neuropsychologist, 16(4), 452–462.CrossRefPubMedGoogle Scholar
  32. Duval, S., & Tweedie, R. (2000). Trim and fill: A simple funnel-plot–based method of testing and adjusting for publication bias in meta-analysis. Biometrics, 56(2), 455–463.CrossRefPubMedGoogle Scholar
  33. *Edwards, J. D., Wadley, V. G., Myers, R. S., Roenker, D. L., Cissell, G. M., & Ball, K. K. (2002). Transfer of a speed of processing intervention to near and far cognitive functions. Gerontology, 48(5), 329–340.Google Scholar
  34. Edwards, J. D., Vance, D. E., Wadley, V. G., Cissell, G. M., Roenker, D. L., & Ball, K. K. (2005a). Reliability and validity of useful field of view test scores as administered by personal computer. Journal of Clinical and Experimental Neuropsychology, 27(5), 529–543.CrossRefPubMedGoogle Scholar
  35. *Edwards, J. D., Wadley, V. G., Vance, D. E., Wood, K., Roenker, D. L., & Ball, K. K. (2005b). The impact of speed of processing training on cognitive and everyday performance. Aging & Mental Health, 9(3), 262–271.Google Scholar
  36. *Edwards, J. D., Valdés, E. G., Peronto, C., Castora-Binkley, M., Alwerdt, J., Andel, R., & Lister, J. J. (2013). The efficacy of InSight cognitive training to improve useful field of view performance: a brief report. The Journals of Gerontology Series B: Psychological Sciences and Social Sciences, gbt113.Google Scholar
  37. Ekstrom, R. B., French, J. W., Harman, H. H., & Dermen, D. (1976). Manual for kit of factor referenced cognitive tests. NJ: Educational Testing Service Princeton.Google Scholar
  38. Emery, L., Myerson, J., & Hale, S. (2007). Age differences in item manipulation span: The case of letter-number sequencing. Psychology and Aging, 22(1), 75.CrossRefPubMedGoogle Scholar
  39. Fabrigoule, C., Letenneur, L., Dartigues, J., Zarrouk, M., Commenges, D., & Barberger-Gateau, P. (1995). Social and leisure activities and risk of dementia: A prospective longitudinal study. Journal of the American Geriatrics Society, 43(5), 485–490 Retrieved from Scholar
  40. File, T., & Ryan, C. (2014). Computer and Internet use in the United States: 2013. American Community Survey Reports. Accessed 11 Jul 2016.
  41. *Finn, M., & McDonald, S. (2011). Computerised cognitive training for older persons with mild cognitive impairment: a pilot study using a randomised controlled trial design. Brain Impairment, 12(03), 187–199.Google Scholar
  42. Fowler, K. S., Saling, M. M., Conway, E. L., Semple, J. M., & Louis, W. J. (2002). Paired associate performance in the early detection of DAT. Journal of the International Neuropsychological Society, 8(01), 58–71.CrossRefPubMedGoogle Scholar
  43. Franzen, M. D., Tishelman, A. C., Sharp, B. H., & Friedman, A. G. (1987). An investigation of the test-retest reliability of the stroop colorword test across two intervals. Archives of Clinical Neuropsychology, 2(3), 265–272.CrossRefPubMedGoogle Scholar
  44. *Gooding, A. L., Choi, J., Fiszdon, J. M., Wilkins, K., Kirwin, P. D., van Dyck, C. H., … Rivera Mindt, M. (2016). Comparing three methods of computerised cognitive training for older adults with subclinical cognitive decline. Neuropsychological Rehabilitation, 26(5–6), 810–821.Google Scholar
  45. Greenwood, P. M., & Parasuraman, R. (2015). The Mechanisms of Far Transfer From Cognitive Training: Review and Hypothesis. Neuropsychology, 30, (6):742–55.
  46. Groth-Marnat, G., & Teal, M. (2000). Block design as a measure of everyday spatial ability: A study of ecological validity. Perceptual and Motor Skills, 90(2), 522–526.CrossRefPubMedGoogle Scholar
  47. *Haimov, I., & Shatil, E. (2013). Cognitive training improves sleep quality and cognitive function among older adults with insomnia. PloS One, 8(4), e61390.Google Scholar
  48. Hall, C. B., Lipton, R. B., Sliwinski, M., Katz, M. J., Derby, C. A., & Verghese, J. (2009). Cognitive activities delay onset of memory decline in persons who develop dementia. Neurology, 73, 356–361. Scholar
  49. Hambrick, D. Z. (2014). Brain Training Doesn't Make You Smarter. Retrieved from
  50. Hardy, R. J., & Thompson, S. G. (1998). Detecting and describing heterogeneity in meta-analysis. Statistics in Medicine, 17(8), 841–856.CrossRefPubMedGoogle Scholar
  51. Harris, Y., & Cooper, J. K. (2006). Depressive symptoms in older people predict nursing home admission. Journal of the American Geriatrics Society, 54(4), 593–597.CrossRefPubMedGoogle Scholar
  52. Heaton, R. K., Avitable, N., Grant, I., & Matthews, C. G. (1999). Further crossvalidation of regression-based neuropsychological norms with an update for the Boston naming test. Journal of Clinical and Experimental Neuropsychology, 21(4), 572–582.CrossRefPubMedGoogle Scholar
  53. Hertzog, C., Kramer, A. F., Wilson, R. S., & Lindenberger, U. (2009). Enrichment effects on adult cognitive development. Can the functional capacity of older adults be preserved and enhanced? Psychological Sciences in the Public Interest, 9(1), 1–65. Scholar
  54. Higgins, J. P. T., Thompson, S. G., Deeks, J. J., & Altman, D. G. (2003). Measuring inconsistency in meta-analyses. BMJ, 327(7414), 557–560.CrossRefPubMedPubMedCentralGoogle Scholar
  55. Hill, N. T. M., Mowszowski, L., Naismith, S. L., Chadwick, V. L., Valenzuela, M., & Lampit, A. (2016). Computerized cognitive training in older adults with mild cognitive impairment or dementia: A systematic review and meta-analysis. American Journal of Psychiatry, 174(4), 329–340.CrossRefPubMedGoogle Scholar
  56. *Hyer, L., Scott, C., Atkinson, M. M., Mullen, C. M., Lee, A., Johnson, A., & Mckenzie, L. C. (2016). Cognitive training program to improve working memory in older adults with MCI. Clinical Gerontologist, 39(5), 410–427.Google Scholar
  57. Jaeggi, S. M., Buschkuehl, M., Jonides, J., & Perrig, W. J. (2008). Improving fluid intelligence with training on working memory. Proceedings of the National Academy of Sciences, 105(19), 6829–6833.CrossRefGoogle Scholar
  58. Joy, S., Kaplan, E., & Fein, D. (2004). Speed and memory in the WAIS-III digit symbol—Coding subtest across the adult lifespan. Archives of Clinical Neuropsychology, 19(6), 759–767.CrossRefPubMedGoogle Scholar
  59. Karbach, J., & Kray, J. (2009). How useful is executive control training? Age differences in near and far transfer of task-switching training. Developmental Science, 12(6), 978–990.CrossRefPubMedGoogle Scholar
  60. Kelly, M. E., Loughrey, D., Lawlor, B. A., Robertson, I. H., Walsh, C., & Brennan, S. (2014). The impact of cognitive training and mental stimulation on cognitive and everyday functioning of healthy older adults: A systematic review and meta-analysis. Ageing Research Reviews, 15, 28–43.CrossRefPubMedGoogle Scholar
  61. Kessels, R. P. C., Van Zandvoort, M. J. E., Postma, A., Kappelle, L. J., & De Haan, E. H. F. (2000). The Corsi block-tapping task: Standardization and normative data. Applied Neuropsychology, 7(4), 252–258.CrossRefPubMedGoogle Scholar
  62. Kimbler, K. J. (2013). Everyday problem solving and instrumental activities of daily living: Support for domain specificity. Behavioral Sciences, 3(1), 170–191.CrossRefPubMedPubMedCentralGoogle Scholar
  63. Larrabee, G. J., Kane, R. L., & Schuck, J. R. (1983). Factor analysis of the WAIS and Wechsler memory scale: An analysis of the construct validity of the Wechsler memory scale. Journal of Clinical and Experimental Neuropsychology, 5(2), 159–168.CrossRefGoogle Scholar
  64. Lee, Y. (2000). The predictive value of self assessed general, physical, and mental health on functional decline and mortality in older adults. Journal of Epidemiology and Community Health, 54(2), 123–129.CrossRefPubMedPubMedCentralGoogle Scholar
  65. Lezak, M. D. (1976). Neuropsychological assessment. New York: Oxford University Press.Google Scholar
  66. Lo, A. H. Y., Humphreys, M., Byrne, G. J., & Pachana, N. A. (2012). Test–retest reliability and practice effects of the Wechsler memory scale-III. Journal of Neuropsychology, 6(2), 212–231.CrossRefPubMedGoogle Scholar
  67. Lustig, C., Shah, P., Seidler, R., & Reuter-Lorenz, P. A. (2009). Aging, training, and the brain: A review and future directions. Neuropsychology Review, 19(4), 504–522.CrossRefPubMedPubMedCentralGoogle Scholar
  68. *Mahncke, H. W., Bronstone, A., & Merzenich, M. M. (2006a). Brain plasticity and functional losses in the aged: scientific bases for a novel intervention. Progress in Brain Research, 157, 81–109.Google Scholar
  69. *Mahncke, H. W., Connor, B. B., Appelman, J., Ahsanuddin, O. N., Hardy, J. L., Wood, R. A., … Merzenich, M. M. (2006b). Memory enhancement in healthy older adults using a brain plasticity-based training program: a randomized, controlled study. Proceedings of the National Academy of Sciences, 103(33), 12523–12528.Google Scholar
  70. Masur, D. M., Fuld, P. A., Blau, A. D., Thal, L. J., Levin, H. S., & Aronson, M. K. (1989). Distinguishing normal and demented elderly with the selective reminding test. Journal of Clinical and Experimental Neuropsychology, 11(5), 615–630.CrossRefPubMedGoogle Scholar
  71. Mayas, J., Parmentier, F. B. R., Andrés, P., & Ballesteros, S. (2014). Plasticity of attentional functions in older adults after non-action video game training: A randomized controlled trial. PLoS One, 9(3), e92269.CrossRefPubMedPubMedCentralGoogle Scholar
  72. McCarty, S. M., Siegler, D. C., & Logue, P. E. (1982). Cross-sectional and longitudinal patterns of three Wechsler memory scale subtests. Journal of Gerontology, 37(2), 169–175.CrossRefPubMedGoogle Scholar
  73. Mefferd Jr., R. B., Wieland, B. A., & James, W. E. (1966). Repetitive psychometric measures: Digit span. Psychological Reports, 18(1), 3–10.CrossRefPubMedGoogle Scholar
  74. Melby-Lervåg, M., Redick, T. S., & Hulme, C. (2016). Working memory training does not improve performance on measures of intelligence or other measures of “far transfer” evidence from a meta-analytic review. Perspectives on Psychological Science, 11(4), 512–534.CrossRefPubMedPubMedCentralGoogle Scholar
  75. *Miller, K. J., Dye, R. V., Kim, J., Jennings, J. L., O'Toole, E., Wong, J., & Siddarth, P. (2013). Effect of a computerized brain exercise program on cognitive performance in older adults. The American journal of geriatric psychiatry, 21(7), 655–663.Google Scholar
  76. Millis, S. R., Malina, A. C., Bowers, D. A., & Ricker, J. (1999). Confirmatory factor analysis of the Wechsler memory scale-III. Journal of Clinical and Experimental Neuropsychology, 21(1), 87–93.CrossRefPubMedGoogle Scholar
  77. Monsell, S. (2003). Task switching. Trends in Cognitive Sciences, 7(3), 134–140.CrossRefPubMedGoogle Scholar
  78. Morrison, A. B., & Chein, J. M. (2011). Does working memory training work? The promise and challenges of enhancing cognition by training working memory. Psychonomic Bulletin & Review, 18(1), 46–60.CrossRefGoogle Scholar
  79. Newburger, E. C. (2001). Home computers and Internet use in the United States, August 2000. US Department of Commerce, Economics and Statistics Administration, US Census Bureau. Washington, DC. Accessed 11 Jul 2016.
  80. Neylan, T. C., Lenoci, M., Rothlind, J., Metzler, T. J., Schuff, N., Du, A. T., … Marmar, C. R. (2004). Attention, learning, and memory in posttraumatic stress disorder. Journal of Traumatic Stress, 17(1), 41–46.Google Scholar
  81. Nieboer, A., Lindenberg, S., Boomsma, A., & Bruggen, A. C. V. (2005). Dimensions of well-being and their measurement: The SPF-IL scale. Social Indicators Research, 73(3), 313–353.CrossRefGoogle Scholar
  82. O’Brien, J. L., Edwards, J. D., Maxfield, N. D., Peronto, C. L., Williams, V. A., & Lister, J. J. (2013). Cognitive training and selective attention in the aging brain: An electrophysiological study. Clinical Neurophysiology, 124(11), 2198–2208.CrossRefPubMedGoogle Scholar
  83. O'Brien, J., Edwards, J. D., Maxfield, N., Karidas, S., Williams, V., & Lister, J. J. (2011). Effects of cognitive training on attention allocation and speed of processing in older adults: An ERP study. Journal of Vision, 11(11), 203–203.CrossRefGoogle Scholar
  84. Oh, A., Vidal, J., Taylor, M. J., & Pang, E. W. (2014). Neuromagnetic correlates of intra-and extra-dimensional set-shifting. Brain and Cognition, 86, 90–97.CrossRefPubMedGoogle Scholar
  85. Owen, A. M., Sahakian, B. J., Semple, J., Polkey, C. E., & Robbins, T. W. (1995). Visuo-spatial short-term recognition memory and learning after temporal lobe excisions, frontal lobe excisions or amygdalo-hippocampectomy in man. Neuropsychologia, 33(1), 1–24.CrossRefPubMedGoogle Scholar
  86. Owsley, C., Sloane, M., McGwin Jr., G., & Ball, K. (2002). Timed instrumental activities of daily living tasks: Relationship to cognitive function and everyday performance assessments in older adults. Gerontology, 48(4), 254–265.CrossRefPubMedGoogle Scholar
  87. Park, D. C., Lodi-Smith, J., Drew, L., Haber, S., Hebrank, A., Bischof, G. N., & Aamodt, W. (2014). The impact of sustained engagement on cognitive function in older adults the synapse project. Psychological Science, 25(1), 103–112.CrossRefPubMedGoogle Scholar
  88. Pérès, K., Helmer, C., Amieva, H., Orgogozo, J. M., Rouch, I., Dartigues, J. F., & Barberger-Gateau, P. (2008). Natural history of decline in instrumental activities of daily living performance over the 10 years preceding the clinical diagnosis of dementia: A prospective population-based study. Journal of the American Geriatrics Society, 56(1), 37–44.CrossRefPubMedGoogle Scholar
  89. *Peretz, C., Korczyn, A. D., Shatil, E., Aharonson, V., Birnboim, S., & Giladi, N. (2011). Computer-based, personalized cognitive training versus classical computer games: a randomized double-blind prospective trial of cognitive stimulation. Neuroepidemiology, 36(2), 91–99.Google Scholar
  90. Pfeffer, R. I., Kurosaki, T. T., Harrah Jr., C. H., Chance, J. M., & Filos, S. (1982). Measurement of functional activities in older adults in the community. Journal of Gerontology, 37(3), 323–329.CrossRefPubMedGoogle Scholar
  91. Powell, J. B., Cripe, L. I., & Dodrill, C. B. (1991). Assessment of brain impairment with the Rey auditory verbal learning test: A comparison with other neuropsychological measures. Archives of Clinical Neuropsychology, 6(4), 241–249.CrossRefPubMedGoogle Scholar
  92. Ratner, E., & Atkinson, D. (2015). Response to Dr. Amit Lampit et al. Journal of the American Geriatrics Society, 63(12), 2614–2615.CrossRefPubMedGoogle Scholar
  93. Raven, J. (2000). The Raven's progressive matrices: Change and stability over culture and time. Cognitive Psychology, 41(1), 1–48.CrossRefPubMedGoogle Scholar
  94. Rebok, G. W., Ball, K., Guey, L. T., Jones, R. N., Kim, H. Y., King, J. W., … Unverzagt, F. W. (2014). Ten-year effects of the advanced cognitive training for independent and vital elderly cognitive training trial on cognition and everyday functioning in older adults. Journal of the American Geriatrics Society, 62(1), 16–24.Google Scholar
  95. Richardson, J. T. E., & Vecchi, T. (2002). A jigsaw-puzzle imagery task for assessing active visuospatial processes in old and young people. Behavior Research Methods, Instruments, & Computers, 34(1), 69–82.CrossRefGoogle Scholar
  96. Roenker, D. L., Cissell, G. M., Ball, K. K., Wadley, V. G., & Edwards, J. D. (2003). Speed-of-processing and driving simulator training result in improved driving performance. Human Factors: The Journal of the Human Factors and Ergonomics Society, 45(2), 218–233.CrossRefGoogle Scholar
  97. Ruff, R. M., Light, R. H., Parker, S. B., & Levin, H. S. (1996). Benton controlled oral word association test: Reliability and updated norms. Archives of Clinical Neuropsychology, 11(4), 329–338.CrossRefPubMedGoogle Scholar
  98. Sanchez-Cubillo, I., Perianez, J. A., Adrover-Roig, D., Rodriguez-Sanchez, J. M., Rios-Lago, M., Tirapu, J. E. E. A., & Barcelo, F. (2009). Construct validity of the trail making test: Role of task-switching, working memory, inhibition/interference control, and visuomotor abilities. Journal of the International Neuropsychological Society, 15(3), 438.CrossRefPubMedGoogle Scholar
  99. Scarmeas, N., Levy, G., Tang, M., Manly, J., & Stern, Y. (2001). Influence of leisure activity on the incidence of Alzheimer's disease. Neurology, 57, 2236–2242 Retrieved from Scholar
  100. Schaie, K. W. (1985). Manual for the Schaie-Thurstone adult mental abilities test (STAMAT): Palo alto. CA: Consulting Psychologists Press.Google Scholar
  101. Schmiedek, F., Lövdén, M., & Lindenberger, U. (2010). Hundred days of cognitive training enhance broad cognitive abilities in adulthood: Findings from the COGITO study. Frontiers in Aging Neuroscience, 2, 27.PubMedPubMedCentralGoogle Scholar
  102. Shah, T., Verdile, G., Sohrabi, H., Campbell, A., Putland, E., Cheetham, C., … Darby, D. (2014). A combination of physical activity and computerized brain training improves verbal memory and increases cerebral glucose metabolism in the elderly. Translational Psychiatry, 4(12), e487.Google Scholar
  103. *Shatil, E. (2013). Does combined cognitive training and physical activity training enhance cognitive abilities more than either alone? A four-condition randomized controlled trial among healthy older adults. Frontiers in Aging Neuroscience, 5(8).Google Scholar
  104. Sheridan, L. K., Fitzgerald, H. E., Adams, K. M., Nigg, J. T., Martel, M. M., Puttler, L. I., … Zucker, R. A. (2006). Normative symbol digit modalities test performance in a community-based sample. Archives of Clinical Neuropsychology, 21(1), 23–28.Google Scholar
  105. Simons, D. J., Boot, W. R., Charness, N., Gathercole, S. E., Chabris, C. F., Hambrick, D. Z., & Stine-Morrow, E. A. L. (2016). Do “brain-training” programs work? Psychological Science in the Public Interest, 17(3), 103–186.CrossRefPubMedGoogle Scholar
  106. *Smith, G. E., Housen, P., Yaffe, K., Ruff, R., Kennison, R. F., Mahncke, H. W., & Zelinski, E. M. (2009). A cognitive training program based on principles of brain plasticity: Results from the Improvement in Memory with Plasticity-based Adaptive Cognitive Training (IMPACT) Study. Journal of the American Geriatrics Society, 57(4), 594–603.Google Scholar
  107. Standford Center on Longevity, & Berlin Max Planck Institute for Human Development. (2014). A Consensus on the Brain Training Industru from the Scientific Community. Retrieved from
  108. Steer, R. A., Ball, R., Ranieri, W. F., & Beck, A. T. (1997). Further evidence for the construct validity of the Beck depression inventory-II with psychiatric outpatients. Psychological Reports, 80(2), 443–446.CrossRefPubMedGoogle Scholar
  109. Steffens, D. C., Otey, E., Alexopoulos, G. S., Butters, M. A., Cuthbert, B., Ganguli, M., … Kumar, A. (2006). Perspectives on depression, mild cognitive impairment, and cognitive decline. Archives of General Psychiatry, 63(2), 130–138.Google Scholar
  110. Stine-Morrow, E. A. L., Parisi, J. M., Morrow, D. G., & Park, D. C. (2008). The effects of an engaged lifestyle on cognitive vitality: A field experiment. Psychology and Aging, 23(4), 778.CrossRefPubMedPubMedCentralGoogle Scholar
  111. *Strenziok, M., Parasuraman, R., Clarke, E., Cisler, D. S., Thompson, J. C., & Greenwood, P. M. (2014). Neurocognitive enhancement in older adults: comparison of three cognitive training tasks to test a hypothesis of training transfer in brain connectivity. Neuroimage, 85, 1027–1039.Google Scholar
  112. Talebi, M. (2013). Study of publication bias in meta-analysis using trim and fill method. International Research Journal of Applied and Basic Sciences, 4(1), 31–36.Google Scholar
  113. Tombaugh, T. N. (2006). A comprehensive review of the paced auditory serial addition test (PASAT). Archives of Clinical Neuropsychology, 21(1), 53–76.CrossRefPubMedGoogle Scholar
  114. Tombaugh, T. N., Kozak, J., & Rees, L. (1999). Normative data stratified by age and education for two measures of verbal fluency: FAS and animal naming. Archives of Clinical Neuropsychology, 14(2), 167–177.PubMedGoogle Scholar
  115. *Toril, P., Reales, J. M., Mayas, J., & Ballesteros, S. (2016). Video game training enhances visuospatial working memory and episodic memory in older adults. Frontiers in Human Neuroscience, 10.Google Scholar
  116. Tun, P. A., Wingfield, A., & Lindfield, K. C. (1997). Motor-speed baseline for the digit-symbol substitution test. Clinical Gerontologist: The Journal of Aging and Mental Health, 18(1), 47–51.Google Scholar
  117. Uttl, B., Graf, P., & Richter, L. K. (2002). Verbal paired associates tests limits on validity and reliability. Archives of Clinical Neuropsychology, 17(6), 567–581.CrossRefPubMedGoogle Scholar
  118. Valenzuela, M., & Sachdev, P. (2009). Can cognitive exercise prevent the onset of dementia? Systematic review of randomized clinical trials with longitudinal follow-up. American Journal of Geriatric Psychiatry, 17(3), 179–187. Scholar
  119. *Vance, D., Dawson, J., Wadley, V., Edwards, J. D., Roenker, D., Rizzo, M., & Ball, K. (2007). The accelerate study: The longitudinal effect of speed of processing training on cognitive performance of older adults. Rehabilitation Psychology, 52(1), 89.Google Scholar
  120. Verghese, J., Lipton, R. B., Katz, M. J., Hall, C. B., Derby, C. A., Kuslansky, G., … Buschke, H. (2003). Leisure activities and the risk of dementia in the elderly. New England Journal of Medicine, 348(25), 2508–2516.
  121. Wecker, N. S., Kramer, J. H., Hallam, B. J., & Delis, D. C. (2005). Mental flexibility: Age effects on switching. Neuropsychology, 19(3), 345.CrossRefPubMedGoogle Scholar
  122. Weinberger, M., Darnell, J. C., Tierney, W. M., Martz, B. L., Hiner, S. L., Barker, J., & Neill, P. J. (1986). Self-rated health as a predictor of hospital admission and nursing home placement in elderly public housing tenants. American Journal of Public Health, 76(4), 457–459. Scholar
  123. Wilde, N. J., Strauss, E., & Tulsky, D. S. (2004). Memory span on the Wechsler scales. Journal of Clinical and Experimental Neuropsychology, 26(4), 539–549.CrossRefPubMedGoogle Scholar
  124. Willis, S. L., Tennstedt, S. L., Marsiske, M., Ball, K., Elias, J., Koepke, K. M., … Stoddard, A. M. (2006). Long-term effects of cognitive training on everyday functional outcomes in older adults. JAMA, 296(23), 2805–2814.Google Scholar
  125. Wilson, B., Cockburn, J., Baddeley, A., & Hiorns, R. (1989). The development and validation of a test battery for detecting and monitoring everyday memory problems. Journal of Clinical and Experimental Neuropsychology, 11(6), 855–870.CrossRefPubMedGoogle Scholar
  126. *Wolinsky, F. D., Vander Weg, M. W., Howren, M. B., Jones, M. P., Martin, R., Luger, T. M., … Dotson, M. M. (2011). Interim analyses from a randomised controlled trial to improve visual processing speed in older adults: the Iowa Healthy and Active Minds Study. BMJ Open, 1(2), e000225.Google Scholar
  127. Zelinski, E. M. (2009). Far transfer in cognitive training of older adults. Restorative Neurology and Neuroscience, 27(5), 455–471.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.School of Aging StudiesUniversity of South FloridaTampaUSA

Personalised recommendations