Journal of Cognitive Enhancement

, Volume 1, Issue 1, pp 26–30 | Cite as

The Enhancement of Social Norm Compliance: Prospects and Caveats

  • Claudia CivaiEmail author
  • Ili Ma


Societies are characterized by a shared system of social norms, which promotes cooperation among people. However, following social norms often means going against self-interest—imagine, for example, being required to choose whether or not to get richer from an unfair deal; ignoring social norms, on the other hand, may elicit disruptive antisocial behaviors that damage human relationships. Therefore, this type of value-based decisions is particularly tough and requires a complex trade-off between self- and other-regarding motivations. The advancement in cognitive neuroscience has shed light on the mechanisms underlying social norm compliance, describing the interplay between the emotional, reward, and self-control systems in shaping social norm preference (Fehr and Camerer, Evolution and Human Behavior 25(2), 63–87, 2007). The modulation of these systems, in particular self-control areas like dorsolateral prefrontal cortex (DLPFC), through TMS and tDCS has proven to be effective in modifying people’s behavior in socio-economic contexts (Knoch et al., Science 314(5800), 829–832, 2006; Knoch et al., Cerebral Cortex 18(9), 1987–1990, 2008; Ruff et al., Science 342(6157), 482–484, 2013). The scope of the current paper is to discuss the potential benefits of the enhancement of social norm compliance in the context of therapeutic interventions, along with the issues of methodological, theoretical, and moral nature that may arise when considering the very definition of social norm: indeed, the benchmark for deciding what is right and what is wrong is not always easy to determine in the social context, and thus, the implications of proposing interventions aimed at modulating social norm compliance, although definitely promising, should also be considered carefully.


Social norms Neuromodulation Therapeutic intervention 


  1. American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (5th ed.). Arlington, VA: American Psychiatric Publishing.Google Scholar
  2. Baumgartner, T., Knoch, D., Hotz, P., Eisenegger, C., & Fehr, E. (2011). Dorsolateral and ventromedial prefrontal cortex orchestrate normative choice. Nature Neuroscience, 14(11), 1468–1474.CrossRefPubMedGoogle Scholar
  3. Bicchieri, C. (2006). The grammar of society: the nature and dynamics of social norms. New York: Cambridge University Press.Google Scholar
  4. Bicchieri, C. (2008). The fragility of fairness: an experimental investigation on the conditional status of pro-social norms. Philosophical Issues, 18, 229–248.CrossRefGoogle Scholar
  5. Birbaumer, N., Veit, R., Lotze, M., Erb, M., Hermann, C., Grodd, W., et al. (2005). Deficient fear conditioning in psychopathy: a functional magnetic resonance imaging study. Archives of General Psychiatry, 62(7), 799–805.CrossRefPubMedGoogle Scholar
  6. Blair, R. J. R. (2003). Neurobiological basis of psychopathy. The British Journal of Psychiatry, 182(1), 5–7.CrossRefPubMedGoogle Scholar
  7. Blair, R. J. R. (2005). Applying a cognitive neuroscience perspective to the disorder of psychopathy. Development and Psychopathology, 17(03), 865–891.CrossRefPubMedGoogle Scholar
  8. Brunoni, A. R., Nitsche, M. A., Bolognini, N., Bikson, M., Wagner, T., Merabet, L., et al. (2012). Clinical research with transcranial direct current stimulation (tDCS): challenges and future directions. Brain Stimulation, 5(3), 175–195.CrossRefPubMedGoogle Scholar
  9. Buckholtz, J. W. (2015). Social norms, self-control, and the value of antisocial behavior. Current Opinion in Behavioral Sciences, 3, 122–129.CrossRefGoogle Scholar
  10. Chang, L. J., & Sanfey, A. G. (2009). Unforgettable ultimatums? Expectation violations promote enhanced social memory following economic bargaining. Frontiers in Behavioral Neuroscience, 3, 36. doi: 10.3389/neuro.08.036.2009.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Chang, L. J., & Sanfey, A. G. (2013). Great expectations: neural computations underlying the use of social norms in decision-making. Social Cognitive and Affective Neuroscience, 8(3), 277–284.CrossRefPubMedGoogle Scholar
  12. Civai, C., Crescentini, C., Rustichini, A., & Rumiati, R. I. (2012). Equality versus self-interest in the brain: differential roles of anterior insula and medial prefrontal cortex. NeuroImage, 62(1), 102–112.CrossRefPubMedGoogle Scholar
  13. Contreras-Rodríguez, O., Pujol, J., Batalla, I., Harrison, B. J., Bosque, J., Ibern-Regàs, I., et al. (2014). Disrupted neural processing of emotional faces in psychopathy. Social Cognitive and Affective Neuroscience, 9(4), 505–512.CrossRefPubMedGoogle Scholar
  14. Cornet, L. J., de Kogel, C. H., Nijman, H. L., Raine, A., & van der Laan, P. H. (2014). Neurobiological factors as predictors of cognitive–behavioral therapy outcome in individuals with antisocial behavior a review of the literature. International Journal of Offender Therapy and Comparative Criminology, 58(11), 1279–1296.CrossRefPubMedGoogle Scholar
  15. Corradi-Dell’Acqua, C., Civai, C., Rumiati, R. I., & Fink, G. R. (2013). Disentangling self-and fairness-related neural mechanisms involved in the ultimatum game: an fMRI study. Social Cognitive and Affective Neuroscience, 8(4), 424–431.CrossRefPubMedGoogle Scholar
  16. Dambacher, F., Schuhmann, T., Lobbestael, J., Arntz, A., Brugman, S., & Sack, A.T. (2015). Reducing proactive aggression through non-invasive brain stimulation. Social Cognitive and Affective Neuroscience, nsv018.Google Scholar
  17. Elster, J. (2009). Social norms and the explanation of behavior. In P. Hedström & P. Bearman (Eds.), The Oxford handbook of analytical sociology (pp. 195–217). Oxford: Oxford University Press.Google Scholar
  18. Falk, A., & Heckman, J. J. (2009). Lab experiments are a major source of knowledge in the social sciences. Science, 326(5952), 535–538.CrossRefPubMedGoogle Scholar
  19. Fehr, E., & Camerer, C. F. (2007). Social neuroeconomics: the neural circuitry of social preferences. Trends in Cognitive Sciences, 11(10), 419–427.CrossRefPubMedGoogle Scholar
  20. Fehr, E., & Fischbacher, U. (2004). Third-party punishment and social norms. Evolution and Human Behavior, 25(2), 63–87.CrossRefGoogle Scholar
  21. Gordon, H. L., Baird, A. A., & End, A. (2004). Functional differences among those high and low on a trait measure of psychopathy. Biological Psychiatry, 56(7), 516–521.CrossRefPubMedGoogle Scholar
  22. Hare, R. D. (1996). Psychopathy and antisocial personality disorder: a case of diagnostic confusion. Psychiatric Times, 13(2), 39–40.Google Scholar
  23. Harlé, K. M., & Sanfey, A. G. (2007). Incidental sadness biases social economic decisions in the ultimatum game. Emotion, 7(4), 876.CrossRefPubMedGoogle Scholar
  24. Iuculano, T., & Kadosh, R. C. (2013). The mental cost of cognitive enhancement. The Journal of Neuroscience, 33(10), 4482–4486.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Kiehl, K. A., Smith, A. M., Hare, R. D., Mendrek, A., Forster, B. B., Brink, J., et al. (2001). Limbic abnormalities in affective processing by criminal psychopaths as revealed by functional magnetic resonance imaging. Biological Psychiatry, 50(9), 677–684.CrossRefPubMedGoogle Scholar
  26. Knoch, D., Pascual-Leone, A., Meyer, K., Treyer, V., & Fehr, E. (2006). Diminishing reciprocal fairness by disrupting the right prefrontal cortex. Science, 314(5800), 829–832.CrossRefPubMedGoogle Scholar
  27. Knoch, D., Nitsche, M. A., Fischbacher, U., Eisenegger, C., Pascual-Leone, A., & Fehr, E. (2008). Studying the neurobiology of social interaction with transcranial direct current stimulation—the example of punishing unfairness. Cerebral Cortex, 18(9), 1987–1990.CrossRefPubMedGoogle Scholar
  28. Kuo, M. F., Paulus, W., & Nitsche, M. A. (2014). Therapeutic effects of non-invasive brain stimulation with direct currents (tDCS) in neuropsychiatric diseases. NeuroImage, 85, 948-960.CrossRefPubMedGoogle Scholar
  29. Ligneul, R, Obeso, I., Ruff, C., & Dreher, J.C. (2016). Dynamical representation of dominance relationships in the human medial prefrontal cortex. Current Biology, 26(23), 3107-3115.Google Scholar
  30. Moretti, L., & Di Pellegrino, G. (2010). Disgust selectively modulates reciprocal fairness in economic interactions. Emotion, 10(2), 169.CrossRefPubMedGoogle Scholar
  31. Müller, J. L., Sommer, M., Wagner, V., Lange, K., Taschler, H., Röder, C. H., et al. (2003). Abnormalities in emotion processing within cortical and subcortical regions in criminal psychopaths: evidence from a functional magnetic resonance imaging study using pictures with emotional content. Biological Psychiatry, 54(2), 152–162.CrossRefPubMedGoogle Scholar
  32. Rilling, J. K., Glenn, A. L., Jairam, M. R., Pagnoni, G., Goldsmith, D. R., Elfenbein, H. A., et al. (2007). Neural correlates of social cooperation and non-cooperation as a function of psychopathy. Biological Psychiatry, 61(11), 1260–1271.CrossRefPubMedGoogle Scholar
  33. Ruff, C. C., Ugazio, G., & Fehr, E. (2013). Changing social norm compliance with noninvasive brain stimulation. Science, 342(6157), 482–484.CrossRefPubMedGoogle Scholar
  34. Sanfey, A. G. (2009). Expectations and social decision-making: biasing effects of prior knowledge on Ultimatum responses. Mind & Society, 8(1), 93–107.CrossRefGoogle Scholar
  35. Sanfey, A. G., Rilling, J. K., Aronson, J. A., Nystrom, L. E., & Cohen, J. D. (2003). The neural basis of economic decision-making in the ultimatum game. Science, 300(5626), 1755–1758.CrossRefPubMedGoogle Scholar
  36. Tabibnia, G., Satpute, A. B., & Lieberman, M. D. (2008). The sunny side of fairness preference for fairness activates reward circuitry (and disregarding unfairness activates self-control circuitry). Psychological Science, 19(4), 339–347.CrossRefPubMedGoogle Scholar
  37. ter Huurne, N., Fallon, S. J., van Schouwenburg, M., van der Schaaf, M., Buitelaar, J., Jensen, O., et al. (2015). Methylphenidate alters selective attention by amplifying salience. Psychopharmacology, 232(23), 4317–4323.CrossRefPubMedGoogle Scholar
  38. Tricomi, E., Rangel, A., Camerer, C. F., & O’Doherty, J. P. (2010). Neural evidence for inequality-averse social preferences. Nature, 463(7284), 1089–1091.CrossRefPubMedGoogle Scholar
  39. van’t Wout, M., Kahn, R. S., Sanfey, A. G., & Aleman, A. (2005). Repetitive transcranial magnetic stimulation over the right dorsolateral prefrontal cortex affects strategic decision-making. Neuroreport, 16(16), 1849–1852.CrossRefGoogle Scholar
  40. Veit, R., Flor, H., Erb, M., Hermann, C., Lotze, M., Grodd, W., et al. (2002). Brain circuits involved in emotional learning in antisocial behavior and social phobia in humans. Neuroscience Letters, 328, 233–236.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing 2017

Authors and Affiliations

  1. 1.School of PsychologyUniversity of KentCanterburyUK
  2. 2.Radboud University, Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive NeuroimagingNijmegenThe Netherlands

Personalised recommendations