Ergonomic aspects in the design of instrumentation for ophthalmic microsurgery

  • Marino MenozziEmail author
  • Nadia Neumayer
  • Ying-Yin Huang
  • Akihisa Watanabe
  • Hideki Oyama
  • Goroh Fujimaki
  • Hiroyuki Kondo
  • Shin-ichi Izumi
  • Kageyu Noro
Wissenschaftliche Beiträge


The following report introduces two projects, dealing about ergonomics in ophthalmic microsurgery. The first project is devoted to the development of a method, by means of which the design of microsurgical instrumentation is evaluated quantitatively. Developed method particularly considers conditions of instrument use as found in microsurgical practice. In a first attempt, the method was validated using laypersons. In the second project, various measures are introduced aiming to improve the posture of the surgeon during the microsurgery. One of the measures consists in using a large 3D-monitor to present the microscopic image to the surgeon instead of viewing the image through the oculars of a traditional microscope. The measure therefore enables a more relaxed posture of the surgeon. In addition, a chair was developed, considering to support the surgeon’s posture when operating using the 3D-monitor or the traditional microscope while performing the microsurgery.

Practical relevance. The method suggested in the first project closes a gap in product design as it provides developers with a quantitative, objective and ecologic valid methods for evaluating designs of microsurgical instrumentation. The measures presented in the second project will contribute to reduce postural complaints of the surgeon caused by microsurgical interventions.


product ergonomics microsurgery ophthalmology fine motor control posture 3D-visualization 

Aspekte der Ergonomie bei der Gestaltung von Instrumenten der ophthalmologischen Mikrochirurgie


Die im Folgenden vorgestellten Forschungsprojekte befassen sich mit der Ergonomie bei mikrochirurgischen Eingriffen in der Ophthalmologie. Das erste Projekt ist der Entwicklung eines Verfahrens gewidmet, das zur quantitativen Bewertung des Produktdesigns mikrochirurgischer Instrumente dient. Hierbei wurde besonderer Wert auf eine, dem Einsatz der Instrumente nahe stehende Bewertungsmethode gelegt. In einem ersten Ansatz, wurde die Tauglichkeit des Verfahrens mittels einer mit Laien durchgeführten Benutzerstudie untersucht. Im zweiten Projekt werden Gestaltungsmaßnahmen untersucht, die zur verbesserten Körperhaltung bei mikrochirurgischen Eingriffen in der Ophthalmologie führen. Eine der Maßnahmen besteht in der Verwendung eines 3D-Monitors, welcher dem Chirurgen eine, im Gegensatz zur Verwendung des traditionellen Mikroskops, aufrechte Körperhaltung ermöglicht. Im Weiteren wurde ein Stuhl entwickelt, dank dem der Chirurg sowohl bei Operationen mittels 3D-Monitor als auch bei Operationen mittels traditionellem Mikroskop eine günstige Körperhaltung einnehmen kann.

Praktische Relevanz. Mit der im ersten Projekt vorgeschlagenen Methode des Produktdesigns wird eine Lücke geschlossen. Damit wird es Entwicklern mikrochirurgischer Instrumente möglich sein, die Auswirkung von Gestaltungsmaßnahmen quantitativ und objektiv mit einer ökologisch validen Methode zu dokumentieren. Die im zweiten Projekt präsentierten Gestaltungsmaßnahem tragen dazu bei, die Körperhaltungsbeschwerden des Operateurs bei mikrochirurgischen Eingriffen zu reduzieren.


Produktergonomie Mikrochirurgie Ophthalmologie Feinmotorik Körperhaltung 3D Visualisierung 



As for the first project presented in this paper, the authors wish to thank Niels Abt from Alcon Grieshaber for his support and Marco Berger from the chair of Consumer Behavior of ETH Zürich for his help in building the electrical circuits of the developed instrumentation. The authors thank the company Kimoto LTD in Zürich for providing free samples of the transparent conductive film. Last but not least we are grateful to our participants for devoting their precious time to our experiment.

As for the second project presented in this paper, the authors thank Prof. Nobuhiro FUJIKI and Mr. Hidenori TOGAMI at University of Occupational and Environmental Health, Japan for contribution in development of the contact confirmation device. They thank Dr. Kouichirou TOYOTA at Toyota Orthopedics Clinic, for his valuable suggestions and taking radiography. They also thank HANDAYA Co., LTD for their contribution in manufacture of the chair.


  1. Belykh E, Onaka NR, Abramov IT, Yagmurlu K, Byvaltsev VA, Spetzler RF, Nakaj P, Preul MC (2018) Systematic review of factors influencing surgical performance: practical recommendations for microsurgical procedures in neurosurgery. World Neurosurg 112:E182–E207. CrossRefGoogle Scholar
  2. Charles S, Katz A, Wood B (2002) Vitreous microsurgery, 3rd edn. Lippincott Williams & Wilkins, BaltimoreGoogle Scholar
  3. Dhimitri KC, McGwin G Jr, McNeal SF, Lee P, Morse PA, Patterson M, Wertz FD, Marx JL (2005) Symptoms of musculoskeletal disorders in ophthalmologists. Am J Ophthalmol 139:179–181CrossRefGoogle Scholar
  4. Eckardt C, Paulo EB (2016) Heads-up surgery for vitreoretinal procedures: an experimental and clinical study. Retina 36(1):137–147. CrossRefGoogle Scholar
  5. Fargen KM, Turner RD, Spiotta AM (2016) Factors that affect physiology tremor and dexterity during surgery: a primer for neurosurgeons. World Neurosurg. Google Scholar
  6. Fitts PM (1954) The information capacity of the human motor system in controlling the amplitude of movement. J Exp Psychol 47:381–391CrossRefGoogle Scholar
  7. Grober ED, Hamstra SJ, Reznick RK, Matsumoto ED, Sidhu RS, Jarvi KA (2003) Validation of novel and objective measures of microsurgical skill: hand-motion analysis and stereoscopic visual acuity. Microsurgery 23:317–322. CrossRefGoogle Scholar
  8. Gupta PK, Jensen PS, de Juan E (1999) Surgical forces and tactile perception during retinal microsurgery. MICCAI’99, LNCS 1679, pp 1218–1225Google Scholar
  9. Heitz RP (2014) The speed-accuracy tradeoff: history, physiology, methodology, and behavior. Front Neurosci 8:150. CrossRefGoogle Scholar
  10. Hollnagel E (2012) Chapter 13. Task analysis: why, what and how. In: Salvendy G (ed) Handbook of human factors and ergonomics, 4th edn. John Wiley & Sons, Hoboken, pp 385–396Google Scholar
  11. ISO (1998) Ergonomic requirements for office work with visual display terminals (VDT’s)—part 4: keyboard requirements for visual display terminals. EN ISO 9241-4Google Scholar
  12. ISO (2000) Ergonomic requirements for office work with visual display terminals (VDT’s)—part 9: requirements for non-keyboard input devices. EN ISO 9241-9Google Scholar
  13. Ito K, Horiuchi T, Seguchi T, Hongo K (2015) Usefulness of a device for body support during operations performed while standing. Neurosurg Rev 36:731–737. CrossRefGoogle Scholar
  14. Kondo H, Fujiki N, Reiko M, Oyama H, Togami H, Hachiya Y, Watanabe A (2016) A study on working posture of microsurgeons. Research report. Dai-ichi Life, Tokyo (in Japanese)Google Scholar
  15. Meredith TA, Sokol N (1999) Atlas of vitreous and retinal surgery. Mosby, St. LouisGoogle Scholar
  16. Neumayer NM (2017) Examining usability of the Grieshaber® DSP handle. Master thesis at the Department of Health Sciences and Technology of the ETH ZürichGoogle Scholar
  17. Noro K (2009) Developing seating designs that support traditional Japanese setting postures. In: Schlick C (ed) Industrial engineering and ergonomics. Springer, Heidelberg, Berlin, New York, pp 609–620CrossRefGoogle Scholar
  18. Noro K, Naruse T, Lueder R, Nao-I N, Kozawa M (2012) Application of zen sitting principles to microscopic surgery seating. Appl Ergon 43(2):308–419. CrossRefGoogle Scholar
  19. Ovari A, Nemenyi D, Just T, Schuldt T, Buhr A, Mlynsik R, Csokay A, Pau HW, Valalik I (2016) Position accuracy in otosurgery measured with optical tracking. PLoS ONE. Google Scholar
  20. Patkin M (2000) History of ergonomy in surgery. New aspects of high technology in surgery. 1st World Congress of High-Tech Medicine, Hannover, pp 239–246Google Scholar
  21. Rooks MD, Slappey J, Zusmanis K (1993) Precision of suture placement with microscope- and loupe-assisted anastomoses. Microsurgery 14:547–550. CrossRefGoogle Scholar
  22. Safwat B, Su ELM, Gassert R, Teo CL, Burdet E (2009) The role of posture, magnification, and grip force on microscopic accuracy. Ann Biomed Eng 37:997–1006. CrossRefGoogle Scholar
  23. Sarker SK, Chang A, Albrani T, Vincent C (2008) Constructing hierarchical task analysis in surgery. Surg Endosc Other Interv Tech 22(1):107–111. CrossRefGoogle Scholar
  24. Singh R, Baby B, Suri A, Anand S (2017) Surgeon specific ergonomically enhanced micro-forceps for micro-neurosurgery. IEEE Long Island Systems, Applications and Technology Conference, FermingdaleGoogle Scholar
  25. Strasser H (ed) (2007) Assessment of ergonomic quality of hand-held tools and computer input devices. IOS, AmsterdamGoogle Scholar
  26. Su ELM, Win TL, Ang WT, Lim TC, Teo CL, Burdet E (2009) Micromanipulation accuracy in pointing and tracing investigated with a contact-free measurement systems. 31st Annual International Conference of the IEEE EMBS, MinneapolisCrossRefGoogle Scholar
  27. Williamson TH (2013) Vitroretinal surgery, 2nd edn. Springer, HeidelbergCrossRefGoogle Scholar
  28. Yadav YR, Parihar V, Ratre S, Kher Y, Iqbal M (2016) Microsurgical skill training. J Neurol Surg A Cent Eur Neurosurg 77:146–154. Google Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2018

Authors and Affiliations

  • Marino Menozzi
    • 1
    Email author
  • Nadia Neumayer
    • 1
  • Ying-Yin Huang
    • 1
    • 2
  • Akihisa Watanabe
    • 3
  • Hideki Oyama
    • 4
  • Goroh Fujimaki
    • 5
  • Hiroyuki Kondo
    • 3
  • Shin-ichi Izumi
    • 4
  • Kageyu Noro
    • 6
    • 7
  1. 1.Human Factors Engineering, Chair of Consumer BehaviorETH ZurichZurichSwitzerland
  2. 2.Department of Industrial Engineering and ManagementNational Taipei University of Technology (Taipei Tech)TaipeiTaiwan, Province of China
  3. 3.Department of OphthalmologyUniversity of Occupational and Environmental HealthFukuokaJapan
  4. 4.Graduate School of Biomedical EngineeringTohoku UniversitySendaiJapan
  5. 5.Gifu Prefectural Research Institute for Human Life TechnologyGifuJapan
  6. 6.Waseda UniversityTokyoJapan
  7. 7.ErgoSeating Co., Ltd.TokyoJapan

Personalised recommendations