Development of the real-time double-ring fusion neutron time-of-flight spectrometer system at HL-2M

  • Bo-Wen ZhengEmail author
  • Wei Zhang
  • Tong-Yu Wu
  • Si-Cheng Huang
  • Yi-Po Zhang
  • Xiu-Feng Xu
  • Shi-Biao Tang
  • Ze-Jie Yin


A real-time double-ring neutron time-of-flight (TOFII) spectrometer system has been proposed to achieve plasma diagnosis on HL-2M tokamak with a relatively high count rate and sufficient energy resolution. The TOFII system is in its development stage, and this work describes its characteristics in terms of design principle, system structure, electronic system design, preliminary tests, and neutron transport simulation. The preliminary test results illustrate that the TOFII system can demonstrate the real-time dynamic spectrum every 10 ms. The results also show that based on the support vector machine method, the nγ discrimination algorithm achieves the discrimination accuracy of 99.1% with a figure of merit of 1.30, and the intrinsic timing resolution of the system is within 0.3%. The simulated flight time spectrums from 1 to 5 MeV are obtained through the Monte Carlo tool Geant4, which also provide the reasonable results. The TOFII system will then be calibrated on mono-energetic neutron sources for further verification.


Time-of-light Neutron spectrometer Geant4 HL-2M 


  1. 1.
    M.G. Johnson, L. Giacomelli, A. Hjalmarsson et al., The 2.5-MeV neutron time-of-flight spectrometer TOFOR for experiments at JET. Nucl. Instrum. Methods A. 591, 417–430 (2008). CrossRefGoogle Scholar
  2. 2.
    Y. Shibata, T. Iguchi, Time-of-flight neutron spectrometer for JT-60U. Rev. Sci. Instrum. 72, 828 (2001). CrossRefGoogle Scholar
  3. 3.
    A. Hjalmarsson, S. Conroy, G. Ericsson et al., The TOFOR spectrometer for 2.5 MeV neutron measurements at JET. Rev. Sci. Instrum. 74, 1750 (2003). CrossRefGoogle Scholar
  4. 4.
    C. Guerrero, A. Tsinganis, E. Berthoumieux et al., Performance of the neutron time-of-flight facility n TOF at CERN. Eur. Phys. J. A 49, 27 (2013). CrossRefGoogle Scholar
  5. 5.
    X. Zhang, J. Källne, G. Gorini et al., Second generation fusion neutron time-of-flight spectrometer at optimized rate for fully digital data acquisition. Rev. Sci. Instrum. 85, 043503 (2014). CrossRefGoogle Scholar
  6. 6.
    W. Zhang, T. Wu, B. Zheng et al., A real-time neutron–gamma discriminator based on the support vector machine method for the time-of-flight neutron spectrometer. Plasma Sci. Technol. 20, 045601 (2018). CrossRefGoogle Scholar
  7. 7.
    Q. Li, The component development status of HL-2M tokamak. Fusion Eng. Des. 82, 561–566 (2007). CrossRefGoogle Scholar
  8. 8.
    D.Q. Liu, H. Ran, G.S. Li et al., Engineering design for the HL-2M tokamak components. Fusion Eng. Des. 88, 679–682 (2013). CrossRefGoogle Scholar
  9. 9.
    D. Liu, T. Lin, T. Qiao et al., Assembly study for HL-2M tokamak. Fusion Eng. Des. 96–97, 298–301 (2015). CrossRefGoogle Scholar
  10. 10.
    D. Liu, C. Zhou, Z. Cao et al., Construction of the HL-2A tokamak. Fusion Eng. Des. 66–68, 147 (2003). CrossRefGoogle Scholar
  11. 11.
    Q. Li, Brief introduction to engineering and experiment of HL-2A tokamak. At. Energy Sci. Technol. 43, 204 (2009). (in Chinese) Google Scholar
  12. 12.
    Y. Liu, X. Ding, Q. Yang et al., Recent advances in the HL-2A tokamak experiments. Nucl. Fusion 45, S239–S244 (2005). CrossRefGoogle Scholar
  13. 13.
    G.C. Neilson, D.B. James, Time of flight spectrometer for fast neutrons. Rev. Sci. Instrum. 26, 1018 (1955). CrossRefGoogle Scholar
  14. 14.
    G.J.F. Legge, P. Van der Merwe, A double scatter neutron spectrometer. Nucl. Instrum. Methods 63, 157–165 (1968). CrossRefGoogle Scholar
  15. 15.
    G. Gorini, J. Källne, High count rate time-of-flight spectrometer for DD fusion neutrons. Rev. Sci. Instrum. 63, 4548 (1992). CrossRefGoogle Scholar
  16. 16.
    S. Agostinelli, J. Allison, K. Amako et al., Geant4: a simulation toolkit. Nucl. Instrum. Methods A 506, 250–303 (2003). CrossRefGoogle Scholar
  17. 17.
    Q. Tang, Z. Zhao, M. Su et al., Performance calculation of ultra fast neutron scintillator. High Power Laser Part. Beams 22, 1243 (2010). (in Chinese) CrossRefGoogle Scholar
  18. 18.
    H. Liu, Development and application of the PXI technology. Meas. Control Technol. 25, 51–53 (2006). (in Chinese) CrossRefGoogle Scholar
  19. 19.
    J. Christiansen, HPTDC high performance time to digital converter version 2.1 CERN/EP-MIC, CERN, Geneva (2002).
  20. 20.
    W. Fan, B. Zheng, J. Cao et al., Development of a fast electron bremsstrahlung diagnostic system based on LYSO and silicon photomultipliers during lower hybrid current drive for tokamak. Plasma Sci. Technol. 21, 065104 (2019). CrossRefGoogle Scholar
  21. 21.
    M.G. Johnson, S. Conroy, M. Cecconello et al., Modelling and TOFOR measurements of scattered neutrons at JET. Plasma Phys. Control. Fusion. 52, 085002 (2010). CrossRefGoogle Scholar
  22. 22.
    S.A. Pozzi, M.M. Bourne, S.D. Clarke, Pulse shape discrimination in the plastic scintillator EJ-299-33. Nucl. Instrum. Methods A 723, 19–23 (2013). CrossRefGoogle Scholar
  23. 23.
    E.V. Pagano, M.B. Chatterjee, E. De Filippo et al., Pulse shape discrimination of plastic scintillator EJ 299-33 with radioactive sources. Nucl. Instrum. Methods A 889, 83–88 (2018). CrossRefGoogle Scholar
  24. 24.
    M.J. Joyce, M.D. Aspinall, F.D. Cave et al., The design, build and test of a digital analyzer for mixed radiation fields. IEEE Trans. Nucl. Sci. 57, 2625–2630 (2010). CrossRefGoogle Scholar
  25. 25.
    M.D. Aspinalla, B. D’Mellowa, R.O. Mackina et al., The empirical characterization of organic liquid scintillation detectors by the normalized average of digitized pulse shapes. Nucl. Instrum. Methods A 578, 261–266 (2007). CrossRefGoogle Scholar
  26. 26.
    V. Vapnik, Estimation of Dependences Based on Empirical Data (Springer, New York, 2006). CrossRefzbMATHGoogle Scholar
  27. 27.
    C. Cortes, V. Vapnik, Support-vector networks. Mach. Learn. 20, 273–297 (1995). CrossRefzbMATHGoogle Scholar
  28. 28.
    C.J.C. Burges, A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Discov. 2, 121–167 (1998). CrossRefGoogle Scholar
  29. 29.
    S. Liu, C. Feng, Q. An et al., BES III time-of-flight readout system. IEEE Trans. Nucl. Sci. 57, 419–427 (2010). CrossRefGoogle Scholar
  30. 30.
    G.S. Gao, R. Partridge, High speed digital TDC for D0 vertex reconstruction. IEEE Trans. Nucl. Sci. 38, 286–289 (1991). CrossRefGoogle Scholar
  31. 31.
    Z. Kohley, E. Lunderberg, P.A. DeYoung et al., Modeling interactions of intermediate-energy neutrons in a plastic scintillator array with GEANT4. Nucl. Instrum. Methods A 682, 59–65 (2012). CrossRefGoogle Scholar
  32. 32.
    S.F. Naeem, S.D. Clarke, S.A. Pozzi, Validation of Geant4 and MCNPX-PoliMi simulations of fast neutron detection with the EJ-309 liquid scintillator. Nucl. Instrum. Methods A. 714, 98–104 (2013). CrossRefGoogle Scholar

Copyright information

© China Science Publishing & Media Ltd. (Science Press), Shanghai Institute of Applied Physics, the Chinese Academy of Sciences, Chinese Nuclear Society and Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Bo-Wen Zheng
    • 1
    • 2
    Email author
  • Wei Zhang
    • 1
    • 2
  • Tong-Yu Wu
    • 1
    • 2
  • Si-Cheng Huang
    • 1
    • 2
  • Yi-Po Zhang
    • 3
  • Xiu-Feng Xu
    • 1
    • 2
  • Shi-Biao Tang
    • 1
    • 2
  • Ze-Jie Yin
    • 1
    • 2
  1. 1.State Key Laboratory of Particle Detection and ElectronicsUniversity of Science and Technology of ChinaHefeiChina
  2. 2.Department of Modern PhysicsUniversity of Science and Technology of ChinaHefeiChina
  3. 3.Southwestern Institute of PhysicsChengduChina

Personalised recommendations