Phase-stabilized RF transmission system based on LLRF controller and optical delay line

  • Jia-Ji Liu
  • Xin-Peng MaEmail author
  • Guo-Xi Pei
  • Nan Gan
  • Ji-Sen Yang


Radio frequency (RF) transmission systems with high-precision phase stability are required by the next generation of particle colliders and light sources. An RF transmission system was designed to meet this requirement. In this system, RF signal generated at the sending end is modulated onto a continuous wave (CW) optical carrier, transmitted through an optical fiber, and demodulated at the receiving end. The phase drift is detected by a digital phase monitor with femtosecond-level accuracy and compensated by a motorized optical fiber delay line (ODL). The measurement results show that the long-term phase drifts can be stabilized to within 100 fs (pk–pk), 500 fs (pk–pk), and 1.8 ps (pk–pk) in a 400-meter-long optical fiber over 1 h, 24 h, and 10 days, respectively.


RF transmission Phase-stable optical fiber Phase drift Phase noise Femtosecond Picosecond Digital phase monitor 


  1. 1.
    P. Jatczak, D. Kolcz, F. Ludwig et al., RF phase reference distribution for the European XFEL, in Low Level Radio Frequency Workshop, Shanghai, China, Nov, 2017, pp. 03–06Google Scholar
  2. 2.
    B. Shillue, A. Sarmad, L. D. Addario, The ALMA 1st local oscillator reference.
  3. 3.
    J.W. Staples, R. Wilcox, FROA004: Fiber transmission stabilization by optical heterodyning techniques and synchronization of mode-locked laser using two spectral lines, in International Free Electron Laser Conference, Palo Alto, CA, USA, 21–26 Aug 2005Google Scholar
  4. 4.
    R. Wilcox, J.M. Byrd, L. Doolittle et al., Stable transmission of radio frequency signals on fiber links using interferometric delay sensing. Opt. Lett. 20, 3050–3052 (2009). CrossRefGoogle Scholar
  5. 5.
    M. Hirokazu, O. Takashi, O. Yuji, et al., WEOBB01: Design and performance of the optical fiber length stabilization system for SACLA, in nternational Particle Accelerator Conference, Dresden, Germany, 16–20 Jun 2014.
  6. 6.
    P. Orel, E. Janezic, P. Lemut, et al., TUPRI079: Test results of the Libera Sync 3 CW reference clock transfer system, in International Particle Accelerator Conference, Dresden, Germany, 16–20 June 2014.
  7. 7.
    M.Y. Peng, Sub-femtosecond optical timing distribution for next-generation light sources. Ph.D. Thesis, Massachusetts Institute of Technology (2015)Google Scholar
  8. 8.
    C. Sydlo, M. Czwalinna,M. Felber, et al., WEP047: Femtosecond timing distribution at the European XFEL, in International Free Electron Laser Conference, Daejeon, Korea, 23–28 Aug 2015.
  9. 9.
    The CEPC Study Group. CEPC conceptual design report, volume I—Accelerator.
  10. 10.
    M. Bousonville, K.M. Bock, M. Felber, et al., MOPG033: New phase stable optical fiber, in Beam Instrumentation Workshop, Virginia, USA, 15–19 Apr 2012Google Scholar
  11. 11.
    Kashyap. US patent 4923278, Inventor, Temperature desensitization of delay in optical fibres, (1990)Google Scholar
  12. 12.
    R. Wilcox, J.M. Byrd, L. Doolittle, et al., JThA38: Phase stable RF-over-fiber transmission using heterodyne interferometry, in National Fiber Optic Engineers Conference, San Diego, Canada, 21–25 Mar 2010.
  13. 13.
    M.P. Donadio, CIC filter introduction.
  14. 14.
    J.E. Volder, The CORDIC trigonometric computing technique. IRE Trans. Electron. Comput. 3, 330–334 (1959). CrossRefGoogle Scholar
  15. 15.
    G. Huang, L.R. Doolittle, J.W. Staples et al., TUPSM082: Signal processing for high precision phase measurements, in Beam Instrumentation Workshop, SantaFe, New Mexico, US, 2–6 May (2010)Google Scholar
  16. 16.
    G.P. Agrawal, P.L. Kelley et al., Nonlinear Fiber Optics, 3rd edn. (Academic Press, Pittsburgh, 2001)Google Scholar
  17. 17.
    S. Jablonski, H. Schlarb, C.Sydlo, MOPB034: CW laser based phase reference distribution for particle accelerators, in International Beam Instrumentation Conference, Melbourne, Australia, 13–17 Sep 2015.
  18. 18.
    O. Hitoshi, Bidirectional WDM transmission technique utilizing two identical sets of wavelengths for both directions over a single fiber. J. Lightwave Technol. 25(1), 297–304 (2007). CrossRefGoogle Scholar
  19. 19.
    R.K. Staubli, P. Gysel, Statistical properties of single-mode fiber Rayleigh backscattered intensity and resulting detector current. IEEE Trans. Commun. 40(6), 1091–1097 (1992). CrossRefGoogle Scholar
  20. 20.
    J.M. Kang, S.K. Han, A novel hybrid WDM/SCM-PON sharing wavelength for up and down-Link using reflective semiconductor optical amplifier. IEEE Photonics Technol. Lett. 18, 502–503 (2006). CrossRefGoogle Scholar
  21. 21.
    J.-M.Lee, D.-W. Lee, Y.-Y. Won, et al., JThA98: Reduction of Rayleigh Back-Scattering noise using RF tone, in National Fiber Optic Engineers Conference, San Diego, CA, USA, 24–28 Feb 2008.
  22. 22.
    T.H. Wood, N.J., Highlands. US patent 4879763, Optical fiber bidirectional transmission system (1989)Google Scholar

Copyright information

© China Science Publishing & Media Ltd. (Science Press), Shanghai Institute of Applied Physics, the Chinese Academy of Sciences, Chinese Nuclear Society and Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Jia-Ji Liu
    • 1
    • 2
  • Xin-Peng Ma
    • 1
    • 2
    Email author
  • Guo-Xi Pei
    • 1
    • 2
  • Nan Gan
    • 1
    • 2
  • Ji-Sen Yang
    • 1
    • 2
  1. 1.Institute of High Energy PhysicsChinese Academy of SciencesBeijingChina
  2. 2.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations