Advertisement

New status of the infrared beamlines at SSRF

  • Xiao-Jie Zhou
  • Hua-Chun Zhu
  • Jia-Jia Zhong
  • Wei-Wei Peng
  • Te Ji
  • Yue-Cheng Lin
  • Yu-Zhao TangEmail author
  • Min ChenEmail author
Article
  • 30 Downloads

Abstract

There are two infrared beamlines at the Shanghai synchrotron radiation facility (SSRF)—BL01B and BL06B. BL01B was the first infrared beamline of the National Facility for Protein Science in Shanghai at SSRF, which is dedicated to synchrotron infrared microspectroscopy. It utilizes bending magnet radiation and edge radiation as light sources. Diffraction-limited spatial resolution is reached in the infrared microspectroscopy experiment. BL01B has been in operation for approximately five years since it opened in January 2015. In the past few years, many meaningful results have been published by user groups from various disciplines, such as biomacromolecule materials and pharmaceutical, environmental, and biomedical sciences. In addition, a new infrared beamline station BL06B is under construction, which is optimized for the mid-infrared and far-infrared band. BL06B is equipped with a vacuum-type Fourier transform infrared spectrometer, infrared microscope, custom long-working-distance infrared microscope, infrared scanning near-field optical microscope, and mid-infrared Mueller ellipsometer. The purpose is to serve experiments with high vacuum requirements and spatial resolution experiments, as well as those that are in situ and time-sensitive, such as high-pressure and atomic force microscopy infrared experiments. The station can be used for research in biomaterials, pharmacy, geophysics, nanotechnology, and semiconductor materials.

Keywords

Synchrotron radiation Fourier transform infrared spectroscopy Infrared microspectroscopy Infrared beamlines 

References

  1. 1.
    M.C. Martin, U. Schade, P. Lerch et al., Recent applications and current trends in analytical chemistry using synchrotron-based Fourier-transform infrared microspectroscopy. TrAC, Trends Anal. Chem. 29, 453–463 (2010).  https://doi.org/10.1016/j.trac.2010.03.002 CrossRefGoogle Scholar
  2. 2.
    P. Dumas, F. Polack, B. Lagarde et al., Synchrotron infrared microscopy at the French synchrotron facility SOLEIL. Infrared Phys. Technol. 49, 152–160 (2006).  https://doi.org/10.1016/j.infrared.2006.01.030 CrossRefGoogle Scholar
  3. 3.
    D. Creagh, J. Mckinlay, P. Dumas, The design of the infrared beamline at the Australian synchrotron. Vib. Spectrosc. 75, 1995–1999 (2006).  https://doi.org/10.1016/j.vibspec.2006.02.009 CrossRefGoogle Scholar
  4. 4.
    H.Y. Holman, H.A. Bechtel, Z. Hao et al., Synchrotron IR spectromicroscopy: chemistry of living cells. Anal. Chem. 82, 8757–8765 (2010).  https://doi.org/10.1021/ac100991d CrossRefGoogle Scholar
  5. 5.
    M.H. Jiang, X. Yang, H.J. Xu et al., Shanghai synchrotron radiation facility. Chin. Sci. Bull. 54, 4171–4181 (2009).  https://doi.org/10.1007/s11434-009-0689-y CrossRefGoogle Scholar
  6. 6.
    T. Ji, Y.J. Tong, H.C. Zhu et al., The status of the first infrared beamline at Shanghai synchrotron radiation facility. Nucl. Instrum. Methods A 788, 116–121 (2015).  https://doi.org/10.1016/j.nima.2015.03.080 CrossRefGoogle Scholar
  7. 7.
    T. Scarvie, N. Andresen, K. Baptiste et al., Noise reduction efforts for the ALS infrared beamlines. Infrared Phys. Technol. 45, 403–408 (2004).  https://doi.org/10.1016/j.infrared.2004.01.009 CrossRefGoogle Scholar
  8. 8.
    Z. Zhang, M. Chen, Y. Tong et al., Performance of the infrared microspectroscopy station at SSRF. Infrared Phys. Technol. 67, 521–5250 (2014).  https://doi.org/10.1016/j.infrared.2014.09.015 CrossRefGoogle Scholar
  9. 9.
    M.J. Baker, J. Trevisan, P. Bassan et al., Using Fourier transform IR spectroscopy to analyze biological materials. Nat. Protoc. 9, 1771–1791 (2014).  https://doi.org/10.1038/nprot.2014.110 CrossRefGoogle Scholar
  10. 10.
    Y.J. Tong, M. Chen, T. Ji et al., A system and a method of eliminating the effect of top-up mode on the synchrotron infrared beamline. China. CN 104390704. 2016-05-11. (in Chinese) Google Scholar
  11. 11.
    H.C. Zhu, Y.J. Tong, T. Ji et al., Elimination technology of noise introduced by top-up injection in synchrotron radiation infrared beamline. J. Infrared Millim Waves 37, 251–256 (2018).  https://doi.org/10.11972/j.issn.1001-9014.2018.02.019 (in Chinese) CrossRefGoogle Scholar
  12. 12.
    H.C. Zhu, Y.J. Tong, T. Ji et al., Optimized design for synchrotron radiation infrared beamline with small extraction angle. Acta Opt. Sin. 36, 1122002 (2016).  https://doi.org/10.3788/AOS201636.1122002 CrossRefGoogle Scholar
  13. 13.
    A. Dazzi, R. Prazeres, F. Glotin et al., Local infrared microspectroscopy with subwavelength spatial resolution with an atomic force microscope tip used as a photothermal sensor. Opt. Lett. 30, 2388–2390 (2005).  https://doi.org/10.1364/OL.30.002388 CrossRefGoogle Scholar
  14. 14.
    J. Kircher, R. Henn, M. Cardona et al., Far-infrared ellipsometry using synchrotron radiation. J. Opt. Soc. Am. B 14, 705–712 (1997).  https://doi.org/10.1364/JOSAB.14.000705 CrossRefGoogle Scholar
  15. 15.
    X. Zhou, J. Zhong, J. Dong et al., The BL01B1 infrared beamline at Shanghai synchrotron radiation facility. Infrared Phys. Technol. 94, 250–254 (2018).  https://doi.org/10.1016/j.infrared.2018.09.013 CrossRefGoogle Scholar
  16. 16.
    G. Fang, Y. Tang, Z. Qi et al., Precise correlation of macroscopic mechanical properties and microscopic structures of animal silks—using Antheraea pernyi silkworm silk as an example. J. Mater. Chem. B 530, 6042–6048 (2017).  https://doi.org/10.1039/C7TB01638G CrossRefGoogle Scholar
  17. 17.
    L. Wu, X.Z. Yin, Z. Guo et al., Hydration induced material transfer in membranes of osmotic pump tablets measured by synchrotron radiation based FTIR. Eur. J. Pharm. Sci. 84, 132–138 (2016).  https://doi.org/10.1016/j.ejps.2016.01.020 CrossRefGoogle Scholar
  18. 18.
    M. Wang, X. Lu, X. Yin et al., Synchrotron radiation-based Fourier-transform infrared spectromicroscopy for characterization of the protein/peptide distribution in single microspheres. Acta Pharm. Sin. B 53, 270–276 (2015).  https://doi.org/10.1016/j.apsb.2015.03.008 CrossRefGoogle Scholar
  19. 19.
    F.S. Sun, M.L. Polizzotto, D. Guan et al., Exploring the interactions and binding sites between Cd and functional groups in soil using two-dimensional correlation spectroscopy and synchrotron radiation based spectromicroscopies. J. Hazard. Mater. 326, 18–25 (2017).  https://doi.org/10.1016/j.jhazmat.2016.12.019 CrossRefGoogle Scholar
  20. 20.
    Z.X. Liu, Y.Z. Tang, F. Chen et al., Synchrotron FTIR microspectroscopy reveals early adipogenic differentiation of human mesenchymal stem cells at single-cell level. Biochem. Biophys. Res. Commun. 478, 1286–1291 (2016).  https://doi.org/10.1016/j.bbrc.2016.08.112 CrossRefGoogle Scholar
  21. 21.
    L.P. Kong, G. Liu, J. Gong et al., Simultaneous band-gap narrowing and carrier-lifetime prolongation of organic-inorganic trihalide perovskites. Proc. Natl. Acad. Sci. USA 113, 8910–8915 (2016).  https://doi.org/10.1073/pnas.1609030113 CrossRefGoogle Scholar
  22. 22.
    G. Liu, J. Gong, L.P. Kong et al., Isothermal pressure-derived metastable states in 2D hybrid perovskites showing enduring bandgap narrowing. Proc. Natl. Acad. Sci. USA 115, 8076–8081 (2018).  https://doi.org/10.1073/pnas.1809167115 CrossRefGoogle Scholar
  23. 23.
    W. Zhang, C. Ye, K. Zheng et al., Tensan silk inspired hierarchical fibers for smart textile applications. ACS Nano 12, 6968–6977 (2018).  https://doi.org/10.1021/acsnano.8b02430 CrossRefGoogle Scholar
  24. 24.
    Y. Wang, J. Wen, B. Peng et al., Understanding the mechanical properties and structure transition of Antheraea pernyi silk fibre induced by its contraction. Biomacromolecules 19, 1999–2006 (2018).  https://doi.org/10.1021/acs.biomac.7b01691 CrossRefGoogle Scholar
  25. 25.
    Q. Liu, X. Wang, X. Tan, X. Xie et al., A strategy for improving the mechanical properties of silk fiber by directly injection of ferric ions into silkworm. Mater. Des. 146, 134–141 (2018).  https://doi.org/10.1016/j.matdes.2018.03.005 CrossRefGoogle Scholar
  26. 26.
    K. Zheng, J. Zhong, Z. Qi et al., Isolation of silk mesostructures for electronic and environmental applications. Adv. Funct. Mater. (2018).  https://doi.org/10.1002/adfm.201806380 CrossRefGoogle Scholar
  27. 27.
    P. Singh, X. Ren, Y. He et al., Fabrication of β-cyclodextrin and sialic acid copolymer by single pot reaction to site specific drug delivery. Arab. J. Chem. (2017).  https://doi.org/10.1016/j.arabjc.2017.11.011 CrossRefGoogle Scholar
  28. 28.
    P. Singh, X. Ren, T. Guo et al., Biofunctionalization of β-cyclodextrin nanosponges using cholesterol. Carbohydr. Polym. 190, 23–30 (2018).  https://doi.org/10.1016/j.carbpol.2018.02.044 CrossRefGoogle Scholar
  29. 29.
    Y. He, W. Zhang, T. Guo et al., Drug nanoclusters formed in confined nano-cages of CD-MOF: dramatic enhancement of solubility and bioavailability of azilsartan. Acta. Pharm. Sin. B 9, 97–106 (2018).  https://doi.org/10.1016/j.apsb.2018.09.003 CrossRefGoogle Scholar
  30. 30.
    J. Xu, L. Wu, T. Guo et al., A “Ship-in-a-Bottle” strategy to create folic acid nanoclusters inside the nanocages of γ-cyclodextrin metal-organic frameworks. Int. J. Pharm. 556, 89–96 (2019).  https://doi.org/10.1016/j.ijpharm.2018.11.074 CrossRefGoogle Scholar
  31. 31.
    J. Xiao, Y. Wen, G. Yu et al., Strategy for microscale characterization of soil mineral-organic associations by synchrotron-radiation-based FTIR technology. Soil Sci. Soc. Am. J. 82, 1583–1591 (2018).  https://doi.org/10.2136/sssaj2018.05.0211 CrossRefGoogle Scholar
  32. 32.
    F.S. Sun, G.H. Yu, M.L. Polizzotto et al., Toward understanding the binding of Zn in soils by two-dimensional correlation spectroscopy and synchrotron-radiation-based spectromicroscopies. Geoderma 337, 238–245 (2019).  https://doi.org/10.1016/j.geoderma.2018.09.032 CrossRefGoogle Scholar
  33. 33.
    H.Y. Du, G.H. Yu, F.S. Sun et al., Iron minerals inhibit the growth of Pseudomonas brassicacearum J12 via a free-radical mechanism: implications for soil carbon storage. Biogeosciences 16, 1433–1445 (2019).  https://doi.org/10.5194/bg-16-1433-2019 CrossRefGoogle Scholar
  34. 34.
    J. Xiao, Y.L. Wen, S. Dou et al., A new strategy for assessing the binding microenvironments in intact soil microaggregates. Soil Tillage Res. 189, 123–130 (2019).  https://doi.org/10.1016/j.still.2019.01.008 CrossRefGoogle Scholar
  35. 35.
    Y.C. Zhou, C. Chen, Z. Guo et al., SR-FTIR as a tool for quantitative mapping of the content and distribution of extracellular matrix in decellularized book-shape bioscaffolds. BMC Musculoskelet. Dis. 19, 220 (2018).  https://doi.org/10.1186/s12891-018-2149-9 CrossRefGoogle Scholar
  36. 36.
    C. Chen, F. Liu, Y. Tang et al., Book-shaped acellular fibrocartilage scaffold with cell-loading capability and chondrogenic inducibility for tissue-engineered fibrocartilage and bone–tendon healing. ACS Appl. Mater. Interfaces. 113, 2891–2907 (2019).  https://doi.org/10.1021/acsami.8b20563 CrossRefGoogle Scholar
  37. 37.
    X. Wang, X. Wang, M. Wang et al., Probing adsorption behaviors of BSA onto chiral surfaces of nanoparticles. Small 14, 1703982 (2018).  https://doi.org/10.1002/smll.201703982 CrossRefGoogle Scholar
  38. 38.
    Macro to Micro, Examining Architectural Finishes (Archetype, London, 2018), ISBN: 9781909492608Google Scholar

Copyright information

© China Science Publishing & Media Ltd. (Science Press), Shanghai Institute of Applied Physics, the Chinese Academy of Sciences, Chinese Nuclear Society and Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Xiao-Jie Zhou
    • 1
  • Hua-Chun Zhu
    • 2
  • Jia-Jia Zhong
    • 1
  • Wei-Wei Peng
    • 2
  • Te Ji
    • 2
  • Yue-Cheng Lin
    • 3
    • 4
  • Yu-Zhao Tang
    • 1
    Email author
  • Min Chen
    • 2
    Email author
  1. 1.National Facility for Protein Science in Shanghai, Shanghai Advanced Research InstituteChinese Academy of SciencesShanghaiChina
  2. 2.Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research InstituteChinese Academy of SciencesShanghaiChina
  3. 3.Shanghai Institute of Applied PhysicsChinese Academy of SciencesShanghaiChina
  4. 4.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations