Advertisement

Numerical study of scattering Legendre moments and effect of anisotropic scattering on SN shielding calculation

  • Cong Liu
  • Xiao-Li Hu
  • Bin ZhangEmail author
  • You Gong
  • Liang Zhang
  • Yi-Xue Chen
Article
  • 20 Downloads

Abstract

In neutron and photon transport problems, anisotropic scattering is of great importance for the particle flux, especially when the angular flux has a strong forward peak in shielding analyses. The conventional Legendre expansion is widely used in discrete ordinates transport codes because of algebraic simplifications with spherical harmonics for the scattering source. However, negative cross sections caused by the finitely truncated expansion may give rise to a negative source and flux. A simple method is adopted, based on integrating functions of scattering moments, to evaluate anisotropy and convergence of expanded functions. A series of problems were designed with angular fluxes of different anisotropy, and numerical simulations were performed using the ARES transport code to study different treatments and algorithms for scattering. Results show that the diagonal transport approximation is more stable and obtains a similar accuracy with the extended approximation. A conservative fix-up for the negative source could ensure particle balance and improve computational accuracy significantly for photon transport. The effect of anisotropic scattering is problem-dependent, and no distinct differences among various methods are observed for volume source problems with a continuous energy source. For beam source problems, flux results are sensitive to negative scattering functions, and strictly nonnegative cross sections need to be implemented.

Keywords

Particle transport Shielding calculation Discrete ordinates method Anisotropic scattering Transport approximation Negative source fix-up 

References

  1. 1.
    G.I. Bell, S. Glasstone, Nuclear Reactor Theory (US Atomic Energy Commission, Washington, 1970)Google Scholar
  2. 2.
    US Nuclear Regulatory Commission. Regulatory Guide 1.190: Calculational and Dosimetry Methods for Determining Pressure Vessel Neutron Fluence. US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, 2001Google Scholar
  3. 3.
    J.P. Odom, J.K. Shultis, Anisotropic neutron transport without Legendre expansions. Nucl. Sci. Eng. 59, 278–281 (1976).  https://doi.org/10.13182/NSE76-5 CrossRefGoogle Scholar
  4. 4.
    J.A. Dahl, B.D. Ganapol, J.E. Morel, Positive scattering cross sections using constrained least squares, in Proceedings of ANS Mathematics and Computation Topical Meeting, 1999Google Scholar
  5. 5.
    J.M. DelGrande, K.A. Mathews, Nonnegative anisotropic group cross sections: a hybrid Monte Carlo-discrete elements-discrete ordinates approach. Nucl. Sci. Eng. 139, 33–46 (2001).  https://doi.org/10.13182/NSE00-69 CrossRefGoogle Scholar
  6. 6.
    D.W. Gerts, K.A. Mathews, Non-negative anisotropic piecewise-average multigroup cross sections, in Proceedings of International Conference on Mathematics, Computational Methods and Reactor Physics, Gatlinburg, Tennessee. 2003Google Scholar
  7. 7.
    J.W. Kim, N.Z. Cho, An efficient deterministic method for generating non-negative scattering cross-sections. Ann. Nucl. Energy 34, 967–976 (2007).  https://doi.org/10.1016/j.anucene.2007.04.014 CrossRefGoogle Scholar
  8. 8.
    G.I. Bell, G.E. Hansen, H.A. Sandmeier, Multitable treatments of anisotropic scattering in S N multigroup transport calculations. Nucl. Sci. Eng. 28, 376–383 (1967).  https://doi.org/10.13182/NSE67-2 CrossRefGoogle Scholar
  9. 9.
    H. Brockmann, Treatment of anisotropic scattering in numerical neutron transport theory. Nucl. Sci. Eng. 77, 377–414 (1981).  https://doi.org/10.13182/NSE81-3 CrossRefGoogle Scholar
  10. 10.
    M.B. Emmett, R.L. Childs, W.A. Rhoades, Repair for Scattering Expansion Truncation Errors in Transport Calculations, Oak Ridge Natl. Lab., 1980. No. CONF-791103-100Google Scholar
  11. 11.
    J.E. Morel, A hybrid collocation-Galerkin-S N method for solving the Boltzmann transport equation. Nucl. Sci. Eng. 101, 72–87 (1989).  https://doi.org/10.13182/NSE89-4 CrossRefGoogle Scholar
  12. 12.
    R. Sanchez, J. Ragusa, On the construction of Galerkin angular quadratures. Nucl. Sci. Eng. 169, 133–154 (2011).  https://doi.org/10.13182/NSE10-31 CrossRefGoogle Scholar
  13. 13.
    T. Ushio, T. Takeda, M. Mori, Neutron anisotropic scattering effect in heterogeneous cell calculations of light water reactors. J. Nucl. Sci. Technol. 40, 464–480 (2003).  https://doi.org/10.1080/18811248.2003.9715381 CrossRefGoogle Scholar
  14. 14.
    T. Takeda, T. Okamoto, A. Inoue et al., Effect of anisotropic scattering in neutronics analysis of BWR assembly. Ann. Nucl. Energy 33, 1315–1321 (2006).  https://doi.org/10.1016/j.anucene.2006.08.008 CrossRefGoogle Scholar
  15. 15.
    A. Yamamoto, Y. Kitamura, Y. Yamane, Simplified treatments of anisotropic scattering in LWR core calculations. J. Nucl. Sci. Technol. 45, 217–229 (2008).  https://doi.org/10.1080/18811248.2008.9711430 CrossRefGoogle Scholar
  16. 16.
    S. Choi, K. Smith, H.C. Lee et al., Impact of inflow transport approximation on light water reactor analysis. J. Comput. Phys. 299, 352–373 (2015).  https://doi.org/10.1016/j.jcp.2015.07.005 MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    E. Oblow, K. Kin, H. Goldstein et al., Effects of highly anisotropic scattering on monoenergetic neutron transport at deep penetrations. Nucl. Sci. Eng. 54, 72–84 (1974)CrossRefGoogle Scholar
  18. 18.
    D.C. Sahni, R.G. Tureci, Discrete eigenvalues of Case spectrum with anisotropic scattering. Nucl. Sci. Eng. 191, 1–15 (2018).  https://doi.org/10.1080/00295639.2018.1463748 CrossRefGoogle Scholar
  19. 19.
    R.E. Macfarlane, D.W. Muir, R.M. Boicourt, et al., The NJOY Nuclear Data Processing System Version 2016, Los Alamos Natl. Lab., 2017. No. LA-UR-17-20093Google Scholar
  20. 20.
    Y. Chen, B. Zhang, L. Zhang et al., ARES: a parallel discrete ordinates transport code for radiation shielding applications and reactor physics analysis (Technol. Nucl. Install, Sci, 2017).  https://doi.org/10.1155/2017/2596727 CrossRefGoogle Scholar
  21. 21.
    L. Zhang, B. Zhang, C. Liu et al., Evaluation of PWR pressure vessel fast neutron fluence benchmarks from NUREG/CR-6115 with ARES transport code. Nucl. Technol. Radiat. Prot. 32, 204–210 (2017)CrossRefGoogle Scholar
  22. 22.
    B. Zhang, L. Zhang, C. Liu et al., Goal-Oriented regional angular adaptive algorithm for the S N equations. Nucl. Sci. Eng. 189, 120–134 (2018).  https://doi.org/10.1080/00295639.2017.1394085 CrossRefGoogle Scholar
  23. 23.
    R.E. MacFarlane, TRANSX 2: A Code for Interfacing MATXS Cross-Section Libraries to Nuclear Transport Codes, Los Alamos Natl. Lab., 1992Google Scholar
  24. 24.
    B.G. Petrovic, A. Haghighat, Effects of S N method numerics on pressure vessel neutron fluence calculations. Nucl. Sci. Eng. 122, 167–193 (1996).  https://doi.org/10.13182/NSE96-3 CrossRefGoogle Scholar

Copyright information

© China Science Publishing & Media Ltd. (Science Press), Shanghai Institute of Applied Physics, the Chinese Academy of Sciences, Chinese Nuclear Society and Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Cong Liu
    • 1
  • Xiao-Li Hu
    • 2
  • Bin Zhang
    • 1
    Email author
  • You Gong
    • 3
  • Liang Zhang
    • 1
  • Yi-Xue Chen
    • 1
  1. 1.School of Nuclear Science and EngineeringNorth China Electric Power UniversityBeijingChina
  2. 2.China Nuclear Power Engineering Co. Ltd.BeijingChina
  3. 3.China Institute of Atomic EnergyBeijingChina

Personalised recommendations