Advertisement

Isothermal, kinetic, and thermodynamic studies for solid-phase extraction of uranium (VI) via hydrazine-impregnated carbon-based material as efficient adsorbent

  • A. Morsy
  • M. H. Taha
  • Muhammad Saeed
  • Amir Waseem
  • Muhammad Asad Riaz
  • M. M. ElmaadawyEmail author
Article
  • 33 Downloads

Abstract

The current study describes the application of a new extraction method for efficient uranium adsorption via cost-effective hydrazine-impregnated activated carbon. Various experimental parameters such as time, adsorbent weight, temperature (°C), and uranium concentration were thoroughly investigated. The synthesized adsorbent was characterized via X-ray diffraction, Fourier transformation infrared spectroscopy (FT-IR), scanning electron microscopy, and thermogravimetric analysis. The results showed 86% uranium extraction under optimized conditions (20% P2O5 at 25 °C, 120 min). The obtained findings fit well with thermodynamic and isothermal (Langmuir and Freundlich isotherms) models and pseudo second-order kinetics. In thermodynamic studies, the negative sign of (∆G°) specified the spontaneity of process, the negative sign of (∆H°) revealed endothermicity, and the positive sign of (∆S°) showed high randomness after adsorption.

Keywords

Uranium Adsorption Phosphoric acid Hydrazine Carbon 

References

  1. 1.
    P. Yang, Q. Liu, J. Liu et al., Highly efficient immobilization of uranium (VI) from aqueous solution by phosphonate-functionalized dendritic fibrous nanosilica (DFNS). J. Hazard. Mater. 363, 248–257 (2019).  https://doi.org/10.1016/j.jhazmat.2018.09.062 CrossRefGoogle Scholar
  2. 2.
    F. Hameed, Hazardous effects of cadmium contaminated water on biological characteristics of fish; a review. RHAZES: Green Appl. Chem. 6, 1–10 (2019)MathSciNetGoogle Scholar
  3. 3.
    R. Sanghani, Novel technique for purification of fertilizer phosphoric acid with simultaneous uranium extraction. Procedia Eng. 83, 225–232 (2014).  https://doi.org/10.1016/j.proeng.2014.09.042 CrossRefGoogle Scholar
  4. 4.
    W. Zou, L. Zhao, R. Han, Removal of uranium (VI) by fixed bed ion-exchange column using natural zeolite coated with manganese oxide. Chin. J. Chem. Eng. 17(4), 585–593 (2009).  https://doi.org/10.1016/s1004-9541(08)60248-7 CrossRefGoogle Scholar
  5. 5.
    J. Li, L. Zhang, J. Peng et al., Removal of uranium from uranium plant wastewater using zero-valent iron in an ultrasonic field. Nucl. Eng. Technol. 48(3), 744–750 (2016).  https://doi.org/10.1016/j.net.2016.01.021 CrossRefGoogle Scholar
  6. 6.
    R. Han, W. Zou, Y. Wang et al., Removal of uranium (VI) from aqueous solutions by manganese oxide coated zeolite: discussion of adsorption isotherms and pH effect. J. Environ. Radioact. 93(3), 127–143 (2007).  https://doi.org/10.1016/j.jenvrad.2006.12.003 CrossRefGoogle Scholar
  7. 7.
    S. Gabriel, A. Baschwitz, G. Mathonniere et al., A critical assessment of global uranium resources, including uranium in phosphate rocks, and the possible impact of uranium shortages on nuclear power fleets. Ann. Nucl. Energy 58, 13–220 (2013).  https://doi.org/10.1016/j.anucene.2013.03.010 CrossRefGoogle Scholar
  8. 8.
    M.A. Mousa, H.S. Gado, M.M.G. Abd-El Fattah et al., Removal of uranium from crude phosphoric acid by precipitation technique. Arab J. Nucl. Sci. Appl. 46, 38–47 (2013)Google Scholar
  9. 9.
    A. Leydier, G. Arrachart, T. Raphael et al., Recovery of uranium (VI) from concentrated phosphoric acid using bifunctional reagents. Hydrometallurgy 171, 262–266 (2017).  https://doi.org/10.1016/j.hydromet.2017.05.008 CrossRefGoogle Scholar
  10. 10.
    N.T. El-Hazek, M.S. El-Sayed, Direct uranium extraction from dihydrate and hemi-dihydrate wet process phosphoric acids by liquid emulsion membrane. J. Radioanal. Nucl. Chem. 257, 347–352 (2003)CrossRefGoogle Scholar
  11. 11.
    M.M. Aly, M.A. Mousa, M.H. Taha et al., Kinetics and thermodynamics of uranium adsorption from commercial di-hydrate phosphoric acid using D2EHPA-impregnated charcoal. Arab J. Nucl. Sci. Appl. 46, 29–37 (2013)Google Scholar
  12. 12.
    H.F. Ali, M.M. Ali, M.H. Taha et al., Uranium extraction mechanism from analytical grade phosphoric acid using D2EHPA and synergistic D2EHPA-TOPO mixture. Int. J. Nucl. Energy Sci. Eng. 2, 57–61 (2012)Google Scholar
  13. 13.
    M. Saeed, M. Munir, M. Nafees et al., Synthesis, characterization and applications of silylation based grafted bentonite for the removal of Sudan dyes: isothermal, kinetic and thermodynamic studies. Microporous Mesoporous Mater. 291, 109697 (2020).  https://doi.org/10.1016/j.micromeso.2019.109697 CrossRefGoogle Scholar
  14. 14.
    A.M. Masoud, M. Saeed, M.H. Taha et al., Uranium adsorption from Bahariya Oasis leach liquor via TOPO impregnated bentonite material; Isothermal, kinetic and thermodynamic studies. Egypt. J. Chem. (2019).  https://doi.org/10.21608/EJCHEM.2019.13638.1843 CrossRefGoogle Scholar
  15. 15.
    A.M.A. El Naggar, M.M. Ali, S.A. Abdel Maksoud et al., Waste generated bio-char supported co-nanoparticles of nickel and cobalt oxides for efficient adsorption of uranium and organic pollutants from industrial phosphoric acid. J. Radioanal. Nucl. Chem. 320(3), 741–755 (2019)CrossRefGoogle Scholar
  16. 16.
    J.P. McKinley, J.M. Zachara, S.C. Smith et al., The influence of uranyl hydrolysis and multiple site-binding reactions on adsorption of U (VI) to montmorillonite. Clays Clay Miner. 43(5), 586–598 (1995).  https://doi.org/10.1346/CCMN.1995.0430508 CrossRefGoogle Scholar
  17. 17.
    M.H. Taha, M.M. El-Maadawy, A.E.M. Hussein et al., Uranium sorption from commercial phosphoric acid using kaolinite and metakaolinite. J. Radioanal. Nucl. Chem. 317(2), 685–699 (2018)CrossRefGoogle Scholar
  18. 18.
    S. Aytas, S. Akyil, M. Eral, Adsorption and thermodynamic behavior of uranium on natural zeolite. J. Radioanal. Nucl. Ch. 260(1), 119–125 (2004).  https://doi.org/10.1023/B:JRNC.0000027070.25215.92 CrossRefGoogle Scholar
  19. 19.
    M. Bonato, K.V. Ragnarsdottir, G.C. Allen, Removal of uranium (VI), lead (II) at the surface of TiO2 nanotubes studied by X-ray photoelectron spectroscopy. Water Air Soil Pollut. 223(7), 3845–3857 (2012).  https://doi.org/10.1007/s11270-012-1153-1 CrossRefGoogle Scholar
  20. 20.
    Z. Guo, Z. Yan, Z. Tao, Sorption of uranyl ions on TiO2: effects of contact time, ionic strength, concentration and humic substance. J. Radioanal. Nucl. Ch. 261(1), 157–162 (2004).  https://doi.org/10.1023/B:JRNC.0000030950.09543.2e CrossRefGoogle Scholar
  21. 21.
    H. Zhang, Y. Xie, Z. Tao, Sorption of uranyl ions on gibbsite: effects of contact time, pH, ionic strength, concentration and anion of electrolyte. Colloids Surf. A 252(1), 1–5 (2005).  https://doi.org/10.1016/j.colsurfa.2004.10.005 CrossRefGoogle Scholar
  22. 22.
    G.L. Drisko, M.C. Kimling, N. Scales et al., One-pot preparation and uranyl adsorption properties of hierarchically porous zirconium titanium oxide beads using phase separation processes to vary macropore morphology. Langmuir 26(22), 17581–17588 (2010).  https://doi.org/10.1021/la103177h CrossRefGoogle Scholar
  23. 23.
    X. Guo, R. Chen, Q. Liu et al., Graphene oxide and silver ions coassisted zeolitic imidazolate framework for antifouling and uranium enrichment from seawater. ACS Sustain. Chem. Eng. 7(6), 6185–6195 (2019).  https://doi.org/10.1021/acssuschemeng.8b06391 CrossRefGoogle Scholar
  24. 24.
    J. Zhu, Q. Liu, J. Liu et al., Ni–Mn LDH-decorated 3D Fe-inserted and N-doped carbon framework composites for efficient uranium (VI) removal. Environ. Sci. Nano 5, 467–475 (2018).  https://doi.org/10.1039/C7EN01018D CrossRefGoogle Scholar
  25. 25.
    L. Tan, Y. Wang, Q. Liu et al., Enhanced adsorption of uranium (VI) using a three-dimensional layered double hydroxide/graphene hybrid material. Chem. Eng. J. 259, 752–760 (2015).  https://doi.org/10.1016/j.cej.2014.08.015 CrossRefGoogle Scholar
  26. 26.
    V. Stucker, J.F. Ranville, M. Newman et al., Evaluation and application of anion exchange resins to measure groundwater uranium flux at a former uranium mill site. Water Res. 45(16), 4866–4876 (2011).  https://doi.org/10.1016/j.watres.2011.06.030 CrossRefGoogle Scholar
  27. 27.
    E. Rosenberg, G. Pinson, R. Tsosie et al., Uranium remediation by ion exchange and sorption methods: a critical review. Johnson Matthey Tech. 60, 59–77 (2016).  https://doi.org/10.1595/205651316X690178 CrossRefGoogle Scholar
  28. 28.
    B. Gu, Y.-K. Ku, G.M. Brown, Sorption and desorption of perchlorate and U (VI) by strong-base anion-exchange resins. Environ. Sci. Technol. 39(3), 901–907 (2005).  https://doi.org/10.1021/es049121f CrossRefGoogle Scholar
  29. 29.
    R. Hoffmann, S. Alvarez, C. Mealli et al., From widely accepted concepts in coordination chemistry to inverted ligand fields. Chem. Rev. 116(14), 8173–8192 (2016).  https://doi.org/10.1021/acs.chemrev.6b00251 CrossRefGoogle Scholar
  30. 30.
    A. Umar, M. Munir, M. Murtaza et al., Properties and green applications based review on highly efficient deep eutectic solvents. Egypt. J. Chem. (2019).  https://doi.org/10.21608/ejchem.2019.12604.1782 CrossRefGoogle Scholar
  31. 31.
    R. Buonsanti, D.J. Milliron, Chemistry of doped colloidal nanocrystals. Chem. Mater. 25(8), 1305–1317 (2013).  https://doi.org/10.1021/cm304104m CrossRefGoogle Scholar
  32. 32.
    C. Goupil, W. Seifert, K. Zabrocki et al., Thermodynamics of thermoelectric phenomena and applications. Entropy 13(8), 1481–1517 (2011).  https://doi.org/10.3390/e13081481 CrossRefzbMATHGoogle Scholar
  33. 33.
    M. Soleilhavoup, G. Bertrand, Cyclic (alkyl)(amino) carbenes (CAACs): stable carbenes on the rise. Acc. Chem. Res. 48(2), 256–266 (2014).  https://doi.org/10.1021/ar5003494 CrossRefGoogle Scholar
  34. 34.
    M.C. Kim, G.S. Hwang, R.S. Ruoff, Epoxide reduction with hydrazine on graphene: a first principles study. J. Chem. Phys. 131(6), 064704 (2009).  https://doi.org/10.1063/1.3197007 CrossRefGoogle Scholar
  35. 35.
    G. Chattopadhyay, P.S. Ray, Hydrazine-hydroquinone complex as an efficient solid phase hydrazine donor: high yield synthesis of luminol and isoluminol. J. Chem. Res. 35(6), 326–328 (2011).  https://doi.org/10.3184/174751911X13058077114827 CrossRefGoogle Scholar
  36. 36.
    J.A. Dean, Lange’s Handbook of Chemistry. (McGraw-Hill Inc, New york, 1999)Google Scholar
  37. 37.
    S. Sangeetha, V. Ranjithkumar, S. Rajendran et al., Synthesis, structure and thermal behavior of hydrazine-coordinated copper pyromellitate polymeric complex and dihydrazinium pyromellitate. J. Therm. Anal. Calorim. 124, 1601–1608 (2016).  https://doi.org/10.1007/s10973-015-5206-8 CrossRefGoogle Scholar
  38. 38.
    M. Gustafsson, A. Fischer, A. Ilyukhin et al., Novel polynuclear nickel (II) complex: hydrazine, sulfato, and hydroxo bridging in an unusual metal hexamer crystal structure and magnetic properties of [Ni6(N2H4)6(SO4)4(OH)2(H2O)8](SO4)(H2O)10. Inorg. Chem. 49(12), 5359–5361 (2010).  https://doi.org/10.1021/ic100648c CrossRefGoogle Scholar
  39. 39.
    E.H.P. Bai, S. Vairam, Spectral and thermal studies of transition metal complexes of Acetamido Benzoic Acids with hydrazine. Asian J. Chem. 25(1), 209 (2013)CrossRefGoogle Scholar
  40. 40.
    H.K. James, Y. Miron, H.E. Perlee, Physical and Explosion Characteristics of Hydrazine Nitrate (Bureau of Mines, Washington, DC, 1970)Google Scholar
  41. 41.
    A.L. Johnson, N. Hollingsworth, A. Kingsley et al., New organocadmium hydrazine adducts and hydrazide complexes. Eur. J. Inorg. Chem. 2012(2), 246–250 (2012).  https://doi.org/10.1002/ejic.201100885 CrossRefGoogle Scholar
  42. 42.
    B. Raju, B.N. Sivasankar, Spectral, thermal and X-ray studies on some new Bis-hydrazine lanthanide(III) glyoxylates. J. Therm. Anal. Calorim. 94, 289–296 (2008).  https://doi.org/10.1007/s10973-007-8953-3 CrossRefGoogle Scholar
  43. 43.
    M. Talawar, A.P. Agrawal, J.S. Chhabra et al., Studies on nickel hydrazinium nitrate (NHN) and bis-(5-nitro-2H tetrazolato-N2) tetraamino cobalt (III) perchlorate (BNCP): potential lead-free advanced primary explosives. J. Sci. Ind. Res. 63(8), 677–681 (2004)Google Scholar
  44. 44.
    L. Vikram, B.N. Sivasankar, New hydrazinium complexes of lanthanide (III) with ethylenediaminetetraacetate: spectral, thermal and XRD studies. Indian J. Chem. Sect. A 45(4), 864–871 (2006)Google Scholar
  45. 45.
    N.M. Farag, G.O. El-sayed, A.M.A. Morsy et al., Modification of Davies Gray method for uranium determination in phosphoric acid solutions. Int. J. Adv. Res. 3, 323–337 (2015)Google Scholar
  46. 46.
    R.N. Mendoza, T.I. Saucedo Medina, A. Vera et al., Study of the sorption of Cr(III) with XAD-2 resin impregnated with di-(2, 4, 4 trimethylpentyl) phosphinicacid (Cyanex 272). Solv. Extr. Ion Exch. 18(2), 319–343 (2000).  https://doi.org/10.1080/07366290008934684 CrossRefGoogle Scholar
  47. 47.
    H. Ullah, M. Nafees, F. Iqbal et al., Adsorption kinetics of malachite green and methylene blue from aqueous solutions using surfactant-modified organoclays. Acta Chim. Slov. 64(2), 449–460 (2017).  https://doi.org/10.17344/acsi.2017.3285 CrossRefGoogle Scholar
  48. 48.
    M. Munir, M. Ahmad, M. Saeed et al., Sustainable production of bioenergy from novel non-edible seed oil (Prunus cerasoides) using bimetallic impregnated montmorillonite clay catalyst. Renew. Sustain. Energy Rev. 109, 321–332 (2019).  https://doi.org/10.1016/j.rser.2019.04.029 CrossRefGoogle Scholar
  49. 49.
    M.T. Akhtar, M. Ahmad, A. Shaheen et al., Comparative study of liquid biodiesel from sterculia foetida (Bottle Tree) using CuO-CeO2 and Fe2O3 nano catalysts. Frontiers in Energy Research 7(4), 1–15 (2019).  https://doi.org/10.3389/fenrg.2019.00004 CrossRefGoogle Scholar
  50. 50.
    A.E.M. Hussein, A.M.A. Morsy, Uranium recovery from wet-process phosphoric acid by a commercial ceramic product. Arab. J. Chem. 10, S361–S367 (2017).  https://doi.org/10.1016/j.arabjc.2012.09.007 CrossRefGoogle Scholar
  51. 51.
    Z.-J. Yi, J. Yao, Y.-F. Kuang et al., Uptake of hexavalent uranium from aqueous solutions using coconut husk activated carbon. Desalinat. Water Treat. 57(4), 1749–1755 (2015).  https://doi.org/10.1080/19443994.2014.977956 CrossRefGoogle Scholar
  52. 52.
    M.T. Uddin, M.S. Islam, M.Z. Abedin, Adsorption of phenol from aqueous solution by water hyacinth ash. ARPN J. Eng. Appl. Sci. 2(2), 11–17 (2007)Google Scholar
  53. 53.
    C. Kütahyalı, M. Eral, Selective adsorption of uranium from aqueous solutions using activated carbon prepared from charcoal by chemical activation. Sep. Purif. Technol. 40(2), 109–114 (2004).  https://doi.org/10.1016/j.seppur.2004.01.011 CrossRefGoogle Scholar
  54. 54.
    A. Kausar, H.N. Bhatti, G. MacKinnon, Equilibrium, kinetic and thermodynamic studies on the removal of U (VI) by low cost agricultural waste. Colloids Surf. B 2013(111), 124–133 (2013).  https://doi.org/10.1016/j.colsurfb.2013.05.028 CrossRefGoogle Scholar
  55. 55.
    M. Solgy, M. Taghizadeh, D. Ghoddocynejad, Adsorption of uranium (VI) from sulphate solutions using Amberlite IRA-402 resin: equilibrium, kinetics and thermodynamics study. Ann. Nucl. Energy 75, 132–138 (2015).  https://doi.org/10.1016/j.anucene.2014.08.009 CrossRefGoogle Scholar
  56. 56.
    S. Yusan, S.A. Erenturk, Adsorption equilibrium and kinetics of U (VI) on beta type of akaganeite. Desalination 263(1–3), 233–239 (2010).  https://doi.org/10.1016/j.desal.2010.06.064 CrossRefGoogle Scholar

Copyright information

© China Science Publishing & Media Ltd. (Science Press), Shanghai Institute of Applied Physics, the Chinese Academy of Sciences, Chinese Nuclear Society and Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • A. Morsy
    • 1
  • M. H. Taha
    • 1
  • Muhammad Saeed
    • 2
  • Amir Waseem
    • 2
  • Muhammad Asad Riaz
    • 2
  • M. M. Elmaadawy
    • 1
    Email author
  1. 1.Nuclear Materials AuthorityCairoEgypt
  2. 2.Department of ChemistryQuaid-i-Azam UniversityIslamabadPakistan

Personalised recommendations