Skip to main content
Log in

XAFS and SRGI-XRD studies of the local structure of tellurium corrosion of Ni–18%Cr alloy

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

The speciation and atomic structures of corrosion products in Ni-based alloys could provide basic information for understanding the Te corrosion mechanism. In this paper, two-dimensional synchrotron-radiation-induced grazing incidence X-ray diffraction was used to characterize the corrosion products of a Ni–18%Cr binary alloy at temperatures from 600 to 1000 °C. The results showed that a film of CrTe is preferentially formed when Te reacts with the Ni-based alloy at low temperatures (below 900 °C), while CrTe and Ni3Te2 are formed at 900 °C. Moreover, at a temperature of 1000 °C, a solid solution is formed without any changes in the Ni–Cr substrate lattice parameters. Furthermore, X-ray absorption fine structure and wavelet transform analyses were used to investigate the atomic local structure of Te. The investigation indicated that Te atoms diffuse into the Ni–Cr substrate to form a substitutional Ni–Cr–Te solid solution at 1000 °C. Notably, based on a discussion of the thermodynamics of the chemical reaction process, CrTe is considered to be the most stable and prevalent corrosion product due to its comparatively lower Gibbs free energy of formation. These results demonstrate that the Ni–18%Cr alloy is capable of resisting the diffusion of Te atoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. R.C. Hill, J. Jagger, J.P. Holdren et al., Nuclear power as an energy source. Science 298, 1553–1554 (2016). https://doi.org/10.1126/science.298.5598.1549

    Article  Google Scholar 

  2. S. Delpech, C. Cabet, C. Slim et al., Molten fluorides for nuclear applications. Mater. Today 13, 34–41 (2010). https://doi.org/10.1016/s1369-7021(10)70222-4

    Article  Google Scholar 

  3. S. Volkov, A.O. Chuk, V. Azhazha et al., Corrosion stability of irradiated hastelloy-type alloys in molten NaF–ZrF4 mixture. J. New Mater. Electrochem. Syst. 9, 305–311 (2006). https://doi.org/10.1080/00223131.2014.854181

    Article  Google Scholar 

  4. M.W. Rosenthal, P.N. Haubenreich, R.B. Briggs, The development status of molten-salt breeder reactors, ORNL/TM-4812, Oak Ridge, TN, USA, (1972). https://doi.org/10.2172/4622532

  5. M.W. Rosenthal, R.B. Briggs, P.N. Haubenreich, Molten-salt reactor program, ORNL/TM-4832, Oak Ridge, TN, USA, (1972)

  6. S. Mrowec, T. Walec, T. Werber, High-temperature sulfur corrosion of iron-chromium alloys. Oxid. Met. 1, 93–120 (1969). https://doi.org/10.1007/bf00609926

    Article  Google Scholar 

  7. Y.Y. Jia, Z.F. Li, X.X. Ye et al., Effect of Cr contents on the diffusion behavior of Te in Ni-based alloy. J. Nucl. Mater. 497, 101–106 (2017). https://doi.org/10.1016/j.jnucmat.2017.10.062

    Article  Google Scholar 

  8. Y.L. Wang, Q. Wang, H.J. Liu et al., Effects of the oxidants H2O and CrF3 on the corrosion of pure metals in molten (Li, Na, K)F. Corros. Sci. 103, 268–282 (2016). https://doi.org/10.1016/j.corsci.2015.11.032

    Article  Google Scholar 

  9. T.Y. Yang, W. Wen, G.Z. Yin et al., Introduction of the X-ray diffraction beamline of SSRF. Nucl. Sci. Tech. 26, 020101 (2015). https://doi.org/10.13538/j.1001-8042/nst.26.020101

    Article  Google Scholar 

  10. H.S. Yu, X.J. Wei, J. Li et al., The XAFS beamline of SSRF. Nucl. Sci. Tech. 26, 050102 (2015). https://doi.org/10.13538/j.1001-8042/nst.26.050102

    Article  Google Scholar 

  11. B. Ravel, M. Newville, ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12, 537–541 (2005). https://doi.org/10.1107/S0909049505012719

    Article  Google Scholar 

  12. Y.Y. Jia, H.W. Chen, J. Qiu et al., Effect of temperature on diffusion behavior of Te into nickel. J. Nucl. Mater. 441, 372–379 (2013). https://doi.org/10.1016/j.jnucmat.2013.06.025

    Article  Google Scholar 

  13. Z.M. Xia, H. Zhang, K.C. Shen et al., Wavelet analysis of extended X-ray absorption fine structure data: theory, application. Physica B 542, 12–19 (2018). https://doi.org/10.1016/j.physb.2018.04.039

    Article  Google Scholar 

  14. L.D. Gulay, I.D. Olekseyuk, Crystal structures of the compounds Ni3Te2, Ni3−δTe2 (δ = 0.12) and Ni1.29Te. J. Alloys Compd. 376, 131–138 (2004). https://doi.org/10.1016/j.jallcom.2003.12.022

    Article  Google Scholar 

  15. J. Barstad, F. Gronvold, E. Rost et al., On the tellurides of nickel. Acta Chem. Scand. 20, 2865–2879 (1966). https://doi.org/10.3891/acta.chem.scand.2865-2879

    Article  Google Scholar 

  16. A.M. Azad, O.M. Sreedharan, Chromium activity in the Cr–Te system using a CaF, EMF method. J. Nucl. Mater. 167, 89–93 (1989). https://doi.org/10.1016/0022-3115(89)90428-5

    Article  Google Scholar 

  17. G. Chattopadhyay, The Cr–Te (chromium–tellurium) system. J. Phase Equilib. 15, 431–440 (1994). https://doi.org/10.1007/bf02647574

    Article  Google Scholar 

  18. K.T. Sasaki, T. Fujimura, R. Fujimura et al., The corrosion product of Cs–Te corrosive compound with 11Cr–ferritic/martensitic steel and 9Cr-oxide dispersion strengthened steel. J. Nucl. Mater. 460, 107–113 (2015). https://doi.org/10.1016/j.jnucmat.2015.02.011

    Article  Google Scholar 

  19. F.Y. Ouyang, C.H. Chang, J.J. Kai, Long-term corrosion behaviors of Hastelloy-N and Hastelloy-B3 in moisture-containing molten FLiNaK salt environments. J. Nucl. Mater. 446, 81–89 (2014). https://doi.org/10.1016/j.jnucmat.2013.11.045

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li-Hua Wang, Zhi-Jun Li or Zheng Jiang.

Additional information

This work was supported by the National Key Research and Development Program of China (No. 2016YFB0700404), National Natural Science Foundation of China (No. U1732267), National Natural Science Foundation of China (Nos. 51671122 and 51671154), Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDA02004210), and Talent Development Fund of Shanghai (No. 201650).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, M., Deng, SJ., Li, L. et al. XAFS and SRGI-XRD studies of the local structure of tellurium corrosion of Ni–18%Cr alloy. NUCL SCI TECH 30, 153 (2019). https://doi.org/10.1007/s41365-019-0673-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-019-0673-4

Keywords

Navigation